
COMPUTER BASED BEHAVIORAL BIOMETRIC AUTHENTICATION

VIA MULTI-MODAL FUSION

THESIS

Kyle O. Bailey, Second Lieutenant, USAF

AFIT-ENG-13-M-04

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

DISTRIBUTION STATEMENT A.
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

The views expressed in this thesis are those of the author and do not reflect the official
policy or position of the United States Air Force, the Department of Defense, or the United
States Government.

This material is declared a work of the U.S. Government and is not subject to copyright
protection in the United States.

AFIT-ENG-13-M-04

COMPUTER BASED BEHAVIORAL BIOMETRIC AUTHENTICATION

VIA MULTI-MODAL FUSION

THESIS

Presented to the Faculty

Department of Electrical and Computer Engineering

Graduate School of Engineering and Management

Air Force Institute of Technology

Air University

Air Education and Training Command

in Partial Fulfillment of the Requirements for the

Degree of Master of Science in Cyberspace Operations

Kyle O. Bailey, B.S.C.S.

Second Lieutenant, USAF

March 2013

DISTRIBUTION STATEMENT A.
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

AFIT-ENG-13-M-04
Abstract

Biometric computer authentication has an advantage over password and access card

authentication in that it is based on something you are, which is not easily copied or stolen.

One way of performing biometric computer authentication is to use behavioral tendencies

associated with how a user interacts with the computer. However, behavioral biometric

authentication accuracy rates are much larger then more traditional authentication methods.

This thesis presents a behavioral biometric system that fuses user data from keyboard,

mouse, and Graphical User Interface (GUI) interactions. Combining the modalities results

in a more accurate authentication decision based on a broader view of the user’s computer

activity while requiring less user interaction to train the system than previous work. Testing

over 30 users, shows that fusion techniques significantly improve behavioral biometric

authentication accuracy over single modalities on their own. Two fusion techniques are

presented, feature fusion and decision level fusion. Using an ensemble based classification

method the decision level fusion technique improves the False Acceptance Rate (FAR) by

0.86% and False Rejection Rate (FRR) by 2.98% over the best individual modality.

iv

Acknowledgments

I would like to thank James Okolica for creating the Windows driver used for data

collection, anyone who contributed their time to participating as a test subject, and 1st

Lieutenant Alanna Keith for being the testing proctor.

Kyle O. Bailey

v

Table of Contents

Page

Abstract . iv

Acknowledgments . v

Table of Contents . vi

List of Figures . ix

List of Tables . x

List of Symbols . xii

List of Acronyms . xiii

I. Introduction . 1

1.1 Physiological Biometrics . 1
1.2 Behavioral Biometrics . 2

1.2.1 Issues with Behavioral Biometrics 2
1.3 Multi-Modal Fusion . 3
1.4 Thesis Structure . 4

II. Related Work . 5

2.1 Metrics for Biometric Authentication . 5
2.2 Identification and Authentication . 6
2.3 Static vs. Dynamic Authentication . 6
2.4 Keyboard Dynamics . 7
2.5 Mouse Dynamics . 12
2.6 Graphical User Interface Interaction . 15
2.7 Multi-Modal Biometric Techniques . 19

2.7.1 Fusion Methods . 19
2.7.2 Fusion of Behavioral Biometrics 19

2.8 Concerns Regarding Biometric Authentication 20

III. Experimental Design . 23

3.1 Data Collection Software . 23

vi

Page

3.1.1 Virtual Machine Introspection . 23
3.1.2 Windows Driver . 25

3.2 Collection Environment and Task Selection 27
3.3 Participant Selection . 28
3.4 Feature Generation . 30

3.4.1 Keystroke Features . 31
3.4.1.1 Keystroke Duration . 31
3.4.1.2 Keystroke Latencies . 31

3.4.2 Mouse Features . 32
3.4.2.1 Average Speed per Movement Direction 33
3.4.2.2 Movement Direction Histogram 33
3.4.2.3 Travel Distance Histogram 33
3.4.2.4 Distribution of Actions on the Screen 34
3.4.2.5 Single Click Interval Times 34
3.4.2.6 Left Double Click Interval Times 34
3.4.2.7 Pause and Click Time 35
3.4.2.8 Action Histogram . 35
3.4.2.9 Extreme Movement Speed Relative to Travel Distance . . 35
3.4.2.10 Movement Elapsed Time Histogram 35
3.4.2.11 Average Movement Speed Relative to Travel Distance . . 35

3.4.3 GUI Features . 36
3.4.3.1 User Actions . 37
3.4.3.2 Control Types . 37
3.4.3.3 Processes Executed . 37

3.5 Fusion System Design . 38
3.5.1 Datasets . 39

3.5.1.1 Identification . 39
3.5.1.2 Authentication . 39

3.5.2 Feature Level Fusion . 41
3.5.3 Ensemble Based Decision Level Fusion 42

IV. Results . 46

4.1 Feature Fusion Results . 48
4.1.1 Identification (Multi-class Dataset) 48
4.1.2 Authentication (Binary Class Dataset) 49
4.1.3 Individual Modality Performance 52
4.1.4 Modality Data Imbalance . 53

4.2 Ensemble Based Decision Level Fusion Classification Results 54
4.3 Comparison with Prior Individual Modality Results 56
4.4 Demographic Effects on Results . 58
4.5 Alternate Data Division Results . 60

vii

Page

4.5.1 Identification (Multi-Class Dataset) 60
4.5.2 Authentication (Binary-Class Dataset) 61

4.5.2.1 Training and Testing Set Creation 62
4.5.3 Ensemble Based, Decision Level Fusion 64

4.6 Summary . 64

V. Conclusions . 67

5.1 Final Thoughts . 67
5.2 Future Work . 68

Appendix A: List of Windows 7 Window Class Names 70

Appendix B: List of Windows 7 Processes . 72

Appendix C: Tasks Given to Testing Participants . 73

Appendix D: Demographic Survey Given to All Participants 76

Appendix E: Demographic Information for All Participants 77

Appendix F: Multi-class Classification Timing Information Using the Fusion Dataset 79

Appendix G: Institutional Review Board Approval 80

Bibliography . 83

Vita . 86

viii

List of Figures

Figure Page

3.1 The architecture of the Xen hypervisor. 24

3.2 The collection environment. 29

3.3 Features are generated for each user on a per task basis. 30

3.4 Direction sectors of mouse movements [14]. 33

3.5 The nine screen regions. 34

3.6 The composition of the training and testing dataset for authentication. 40

3.7 Feature level fusion. 41

3.8 Ensemble based decision level fusion. 43

4.1 Relationship with the number of unknown user instances in the training set and

FAR/FRR for feature fusion. 50

4.2 Relationship with the number of unknown user instances and FAR/FRR for

EBDL fusion. 55

4.3 Data division and feature generation process for the 10 minute data split. 61

ix

List of Tables

Table Page

2.1 Keystroke features from previous work. 11

2.2 Mouse modality features from previous work. 14

2.3 Previous work GUI usage features. 18

3.1 Output from the collection tool when recording keystrokes. 26

3.2 Output from the collection tool when recording mouse events. 26

3.3 Keystroke features. 32

3.4 Mouse modality features. 36

3.5 GUI usage features. 37

3.6 The number of features used by each classifier after feature selection. 42

3.7 Example output from a individual modality classifier. 44

3.8 Feature generation example for the ensemble classifier. 44

4.1 Final parameters used for the selected algorithms. 48

4.2 Identification (multi-class) classification comparison results. 48

4.3 Authentication (binary-class) classification comparison results. 50

4.4 Significance of fusion FAR vs individual modalities FAR. 51

4.5 Significance of fusion FRR vs individual modalities FRR. 51

4.6 Achieved and desired number of actions per training block. 53

4.7 EBDL fusion authentication classification per machine learning algorithm . . . 56

4.8 Significance of feature fusion vs. EBDL fusion. 56

4.9 Required number of testing and training actions per previous work. 58

4.10 Significance of demographics on classification accuracy. 59

4.11 Identification (multi-class) classification comparison results. 61

4.12 Authentication (binary-class) classification comparison results. 63

x

Table Page

4.13 Significance of fusion FAR vs individual modalities FAR. 63

4.14 Significance of fusion FRR vs individual modalities FRR. 64

4.15 EBDL fusion authentication classification per machine learning algorithm . . . 65

4.16 Significance of feature fusion vs. EBDL fusion. 65

xi

List of Symbols

Symbol Definition

γ gamma parameter used by LibSVM

xii

List of Acronyms

Acronym Definition

AFIT Air Force Institute of Technology

HTML HyperText Markup Language

FAR False Acceptance Rate

FRR False Rejection Rate

EER Equal Error Rate

GUI Graphical User Interface

ROC Receiver Operating Characteristic

CAC Common Access Card

SVM Support Vector Machine

ANN Artificial Neural Network

SFS Sequential Feature Selection

PMMR Plus-M-Minus-R

RBF Radial Basis Function

IDS Intrusion Detection System

API Application Programming Interface

ANOVA Analysis of Variance

EBDL Ensemble Based, Decision Level

xiii

COMPUTER BASED BEHAVIORAL BIOMETRIC AUTHENTICATION

VIA MULTI-MODAL FUSION

I. Introduction

Computer systems have become increasingly integral to the way that information is

created and transferred in our society, making the security of these systems more

important than ever. Information security is commonly separated into three categories,

confidentiality, integrity and availability, each of which are equally important when

considering the security of data [3]. The authenticity of a user who is accessing that data

must be validated in order for all three information security principles to hold.

Authentication of a user is the process of confirming that the individual accessing

and interacting with the computer, is who they claim to be. Traditionally authentication is

based on something you know and/or something you have. An example would be using

a Common Access Card (CAC) and pin number or a username and password [34]. One

downside however is that this type of authentication can be lost, stolen, or disclosed. It

also does not truly identify the user as themselves, but instead by something they know or

have. Biometric authentication is advantageous in that it is based on something you are

[9]. There are two subsets of biometric authentication, physiological and behavioral [25].

These authentication methods identify the user as themselves based on measurable physical

or behavioral characteristics.

1.1 Physiological Biometrics

Physiological biometric authentication involves measuring physical characteristics

of a persons body that make them unique. Physiological methods include fingerprint

1

scanning, facial recognition, hand geometry recognition or retinal scans [25]. Generally

these methods are more reliable and successful in real world application than behavioral

techniques [14]. One drawback of physical biometrics is that they require hardware to

perform the biometric data collection. This hardware adds cost and another layer of

complexity to the login process for the user. Another drawback is that all of the physical

biometric methods still contain some error. Comparison testing by Bhattacharyya, et al.

[25], found that the iris scanner, with an Equal Error Rate (EER) of 0.01% performed the

best.

1.2 Behavioral Biometrics

Behavioral biometric authentication is the process of measuring behavioral tendencies

of a user resulting from both psychological and physiological differences from person to

person. Behavioral methods for authentication include typing dynamics [1, 2, 6, 10, 20, 37],

mouse dynamics [11, 12, 14, 18, 19, 39], voice recognition [25], signature verification [25]

and Graphical User Interface (GUI) usage analysis [7, 9, 15–17, 22]. Due to the variability

of the human body and mind, the adoption of this type of biometrics has lagged behind

physiological biometrics. However, the use of keystrokes, mouse dynamics and GUI

interaction for biometrics does not require extra hardware. The data can be collected using

software that gathers information from the existing keyboard, mouse and GUI messages

sent by the installed operating system. A second benefit to computer interaction based

biometrics is that authentication can occur actively throughout the user’s session as opposed

to once during initial logon. This could prevent a user’s session from being hijacked after

the initial logon has occurred.

1.2.1 Issues with Behavioral Biometrics.

Current implementations of behavioral biometric authentication systems have under-

lying problems resulting in slow adoption into real world environments. The first is the

amount of user data that is needed to both train and test the system. Previous systems need

2

thousands of user actions which can take hours of interaction before a decision is able to

be made to the claimed accuracy. Keystroke based systems need to be trained on 15,000-

85,000+ keystrokes and tested on 300-900 keystrokes. Mouse movement based systems

need 10,000-12,500 mouse movements for their training set and 25-2,000 movements for

testing. GUI thresholds have yet to be established by previous work. This amount of data

can take time to collect and might not catch a malicious user who is trying to minimize

their time on the system.

Second, is the number of modalities that previous systems collect data from. Almost

all previous systems collect data from only one modality leaving others susceptible to

malicious use without the biometric system knowing.

Finally the accuracy of the system needs to be improved. High number of false alarms

frustrates users and network administrators but on the other hand a lack of detection of

malicious use cannot be tolerated. Both types of error need improvement from current

levels and should begin to approach physical biometric error rates if behavioral biometrics

are ever to be adopted.

1.3 Multi-Modal Fusion

This thesis presents a behavioral biometric system that fuses user data from keyboard,

mouse, and GUI interactions. The system collects user characteristics relating to the way a

particular user interacts with the computer. This is done by monitoring a users keystrokes,

mouse movements, and GUI usage patterns while they are performing free computer use

over a set of three research based tasks. Features are calculated on these actions. Feature

fusion is then used to combine data from the three modalities for classification.

Classification occurs on the data in both an identification (multi-class) and authenti-

cation (binary class) situation leading to the reported results. Identification is the process

of determining who the user is, while authentication is used to confirm the validity of that

identity. Additionally, an Ensemble Based, Decision Level (EBDL) fusion method is an-

3

alyzed which first classifies on each modality alone and generates a fusion of the results.

A final classifier then produces a decision. From the experiments that follow, it was found

that using EBDL fusion, significant classification improvements were achieved over each

of the individual modalities on their own and feature fusion.

By collecting user interactions from all three surfaces, the malicious user cannot

escape the watchful eye of a system that is able to monitor all at once. For example, if

a malicious user knows that keystroke dynamics are being used to monitor a computer

system, they could perform their activities by only touching the mouse. On top of this

GUI usage analysis seeks to emphasize how the user interacts with the system, such as

do they prefer keyboard shortcuts over GUI menus, page up/down versus the scroll bar or

scroll wheel, etc. There are thousands of minute differences between how two different

users interact with a computer system. Analyzing the entire picture of a users interaction is

shown to improve the accuracy and reliability of a behavioral biometric system.

1.4 Thesis Structure

This thesis is laid out in the following structure. Chapter 2 presents prior work

on biometrics, with the focus being on keystrokes, mouse dynamics, and GUI usage

analysis. Previous work that combines multiple biometric techniques are also discussed

along with concerns associated with using biometrics as an authentication method. Chapter

3 discusses the experimental design of the fusion system to include the data collection

method, participant selection and tasks, features generated from the data, and two methods

of fusing data from multiple modalities. Chapter 4 discusses the performance achieved by

the individual modalities and both fusion methods, along with a comparison of the fusion

system against previous work, and an analysis of how demographics may affect the fusion

technique. Chapter 5 includes future work and final thoughts.

4

II. Related Work

The idea of using keystroke and mouse dynamics as a supplement to traditional

authentication has been around for several decades [31], but there has been minimal

research done in the area of combining these two techniques into one system. Graphical

User Interface (GUI) usage analysis is a relatively young technique [16] and brings in the

concept of trying to analyze exactly how the user accomplishes a task within the operating

system interface.

The chapter presents the way biometrics are measured, a definition of identification

and authentication, and static versus dynamic authentication. This is followed by previous

work done in the use of keystroke dynamics, mouse dynamics, and GUI usage analysis as

a means for authentication. Previous work that has fused multiple biometric modalities is

also discussed. Finally concerns with the use of biometrics as an authentication method are

explored.

2.1 Metrics for Biometric Authentication

Being able to quantify the effectiveness of the authentication technique is important.

Previously, performance has been measured using the metrics of False Acceptance Rate

(FAR), False Rejection Rate (FRR) and the Equal Error Rate (EER). Both FAR and FRR

are reported as a percentage, and signify the percentage of time an impostor is authenticated

(FAR) or the percentage of time a legitimate user is denied access (FRR). The EER is

the value where at the FAR and FRR are equal. This point is determined by creating a

curve for both FAR and FRR based on the Receiver Operating Characteristic (ROC) for the

classification algorithm [25]. An example of some of the ROC’s used are the number of

seconds of interaction [11], the number of mouse events [12], and the number of keystrokes

[20]. A majority of the previous work reports their results in either FAR and FRR or EER

5

but there are a few [2, 22] who use the rate of identification or detection as a metric for

performance. These values are simply recorded as the percentage of time the system can

make a correct decision on the identity or authentication status of the user. It is important

to note that these values can heavily depend on the number of tests performed.

2.2 Identification and Authentication

Previous work has defined two different problems to be solved by biometrics,

identification and authentication. These two problems have been defined several ways

but in this thesis they will be discussed in the following context. Identification is the

process of determining the identity of a user [9]. This means the system will come up

with an answer of who provided the data sample based on its stored database of known

users. Authentication on the other hand, confirms whether or not that identity is valid

[9]. In biometrics, when performing authentication the system will either give a yes or

no answer based on whether the sample provided matches it’s known user. Traditional

authentication systems such as a username and password, perform both of these functions,

with the username acting as a form of identification and the password being used to confirm

this identity.

2.3 Static vs. Dynamic Authentication

With the focus being on authentication, it is necessary to note the two different ways

that authentication can be performed, statically or dynamically. Static authentication is

what most computer users are familiar with. During static authentication user verification

is performed only once, when the user enters their password at logon or into a lock screen.

This subsequently leaves the session open for attack, and there is little way of determining

who has control of the keyboard. Dynamic or active authentication on the other hand, is

ongoing throughout the users session and would ideally prevent an unauthorized user from

taking control of the computer once the static authentication phase has been completed.

6

There have been several different methods that use behavioral biometric techniques to

perform dynamic authentication. These include monitoring the users keystroke dynamics

[1, 2, 6, 10, 20, 37], mouse dynamics [11, 12, 14, 19] or GUI interaction style [7, 9, 15–

17, 22] just to name a few of interest.

In order to simulate dynamic authentication in a testing environment, previous

research has elected to divide up a users session using varying techniques. Ahmed, et

al. [13, 14] and Zheng, et al. [12] both divided up a users session based on the number of

actions they wanted per block whereas Marsters, et al. [20] and Garg, et al. [22] divided up

the users session on a set time interval with a minimum number of actions required in that

time interval. Finally Imsand [9, 15–17] and Pusara, et al. [7] cut up the users data into

thirds or quarters respectively using part for classification and leaving one fraction out for

verification testing. This is an important variable to note for each previous work in order to

understand how they were seeking to achieve dynamic authentication.

2.4 Keyboard Dynamics

Gaines, et al. [31], introduced the idea of using behavioral biometrics as a supplement

to traditional authentication. Initially, keystroke timing data was used to supplement

password entry [10, 31, 37], this evolved into being able to analyze long structured text

as a basis for authentication [1, 2], and finally long free text samples [5, 6, 20]. Each work

mentioned used a similar set of features for classification which include intra-key timing, or

the latency between the depress of one key to the next, and key hold duration, or the average

time between when a key is depressed and released. Research has been done using several

statistical classifiers which have attained similar results in terms of classification accuracy

[20]. An overview of the features that each paper calculated and the type of classifier they

used can be seen in Table 2.1. All work discussed below used a standard 104 key keyboard

with their participants typing in English unless otherwise noted.

7

Joyce, et al. [10] proposed a method for using keystroke latencies in order to create

a unique digital signature. This signature was created by requiring the user type in their

first and last name as well as their username and password eight separate times during

an enrollment phase. This established a baseline of latencies between when the different

key pairs were pressed. For example, if the username was Jim there would be timing

information between the press of the J and I, and I and M. From this a threshold is

established which is set as two standard deviations outside of the mean calculated from

the enrollment values for each latency. If any of the latency values fall outside of this range

the person is rejected access and they are deemed to be an impostor. Since this work was

solely password based it does not mention dynamic authentication but rather focuses on

enhancing the static authentication portion of a logon. Using this method Joyce, et al. [10],

were able to achieve a FAR of 16.25% and a FRR of 0.25% in their study.

Brown, et al. [37] similarly focused on using short strings to collect typing dynamics,

specifically the users name, but used a neural network for the classifier as opposed to

the statistical method used by Joyce, et al [10]. In the experiment 46 test subjects were

asked to type their name 25 times and then also type the names of the other subjects in

order to provide imposter data. This timing information was used to create a reference

model to train the classifier. Like Joyce, et al. [10] the features calculated for each

entry included the latencies between the individual key presses and any samples that were

deemed as outliers relative to that users data set were thrown out. Two different Artificial

Neural Network (ANN)’s were tested, the Adaptive Linear Element (ADALINE) and a

backpropagation neural network. The best results were achieved using a backpropagation

neural network that was partially connected and trained to produce the lowest possible

FAR. Using this setup and technique Brown, et al. [37], were able to achieve a FAR of

0.0% and a FRR of 12.0%.

8

This was followed up by Monrose, et al. [1, 2]. Their work on using keystroke

dynamics as a biometric for authentication showed promising results based on some

modifications of the work done by Joyce et al. [10]. They received structured typing

samples (100-200 words) from 63 different test subjects over a period of 11 months. The

latency between key presses and the duration of each press was recorded for all test subjects

and stored as profiles. Latencies of the most common key pairs and key triads were then

used to calculate features for the classifier. For example some of the features could be

timing information between th, er, in, on, ng, are, ing, etc. Three different types of

classifiers were then tested but the weighted probabilistic classifier showed the best results.

This type of classifier uses probabilities based on the number of times a given feature was

seen and added more weight to digraph features such as th, er, in, etc., that had higher

frequencies in the English language. A reference score is then calculated between each

reference profile and the unknown profile. The profile that generates the largest reference

score is then labeled to be the same user as the unknown profile. Monrose et al. [1, 2], were

able to report an identification success rate of 87.18% over all 63 test subjects.

Gunetti, et al. [6], proposed the first system that used only free text typing samples.

The collection of data by Gunetti, et al. [6], was done through a HyperText Markup

Language (HTML) based web page that used Javascript to capture the timing data. Test

subjects were allowed to enter anything they desired into the web page but were asked to

type anywhere from 700 to 900 characters. It should be noted that all test subjects spoke

Italian and were asked to type their samples in Italian. This research did not focus on

dynamic authentication and therefore calculated the distance measures on each individual

sample of text as a whole. Forty test subjects provided 15 samples each, over the course

of 11 months. Two methods of calculating the distance between two typing samples were

developed by Gunetti, et al. [6] as well as Bergadano, et al. [5], called R measures and A

measures. R measures are calculated by first determining the digraphs two typing samples

9

have in common, ranking these in descending order for each user based on latency time and

then determining the normalized disorder of one of the samples when considering the other

sample as ordered. A threshold was then used to determine at what disorder value two

samples should be considered different. A measures are calculated by taking the latency

times of digraphs that two samples have in common, the larger of the two latency times

are divided by the smaller latency time. If this ratio is larger than a threshold that is set

than the two samples are dissimilar for that digraph. These distance measures were used in

different combinations between digraphs, trigraphs and four-graphs as a classifier. Using

the R measure on digraphs, trigraphs and four-graphs as well as the A measure on digraphs

Gunetti, et al. [6], were able to achieve a FAR of 0.005% and a FRR of 5.0%.

Finally, Marsters [20], developed a system called BAKER (Biometric Analysis of

Keystroke Entry Rhythms) which used a Bayesian network classifier to provide active

authentication using keystroke dynamics. Data was collected from 10 test subjects who

installed the software on their machine and left it running for as long as 18 months.

Marsters initial plan was to calculate both duration of the key hold and the latency between

key presses but unlike previous research the surrounding context was also taken into

account. For example to determine the duration of a key hold the letter pressed before

and the letter pressed after were also recorded such that the hold time for “key Y was

n milliseconds when preceded by key X and succeeded by key Z” [20]. This results

in a trigraph of data. A quadgraph is collected for the latency between key presses but

takes on the form “the latency between the press of key X and key Y was n milliseconds

when preceded by key W and succeeded by key Z”. Due to a limitation of their hardware

however, Marsters had to eliminate the contextual information and proceed with unigraphs

for duration and digraphs for latency information. The mean value recorded was stored

for each type of feature. Several different classifiers were tested but the best results,

both in terms of speed and classification ability, were seen from a BayesNet classifier

10

which is integrated into the Weka data mining toolkit. For their system to perform active

authentication a three hour time slice was set with a requirement that each three hour block

contain at least 300 keystrokes. Three hours is one of the longest time slices seen in

previous work and was presumably picked to allow for the collection of ample data to

calculate meaningful unigraphs and digraphs but this is not explicitly stated. From this

research an EER of 0.27% was reported.

Even though there has been a fair amount of research into keystroke dynamics it has

been suggested that there remains much to be desired in terms of implementation and

deployment on a commercial level [20]. Several companies have released software that

was designed to not only verify the users password but also the way the password was

typed. This includes Deepnet Security’s TypeSense, and bioChec which contains a patented

signature matching algorithm [9].

Table 2.1: Keystroke features from previous work.

Article Features Calculated Classifier

Joyce, et al. [10]
Latencies between key presses of: Custom built

- Username, password and full name Statistical classifier

Brown, et al. [37]
Latencies between key presses of: Neural Network

- Full name

Monrose, et al. [2]

Duration and latency between: Weighted

- 100 to 200 words of free or probabilistic

structured text classifier

Gunetti, et al. [6]
Duration and latency between: R and A distance

- 700 to 900 characters of free text measures

Marsters [20]
Duration and latency between: BayesNet

> 300 characters of free text

11

2.5 Mouse Dynamics

Biometrics based on mouse dynamics involves monitoring the way a user moves the

mouse in order to use that data as a means for authentication [11, 12, 14, 19]. Initially

Gamboa, et al. [11], used a memory game to capture mouse movements, where as work

that came after ([12, 14, 19]) focused on free mouse movements in day-to-day use. The

features calculated on this type of data include average speed per movement direction, click

based interval times, action histogram, and average movement speed per travel distance.

Classification was performed using both an ANN [14] and Support Vector Machine (SVM)

[12, 19].

Gamboa, et al. [11], proposed a behavioral biometric system based on human

interaction with the pointing device. They constructed a web page and corresponding script

that collected a user’s mouse coordinates as they were playing a memory game. Due to this

they were not able to make a guarantee on the type of mouse their participants were using

whether it be three button mouse, track pad, etc. Gamboa, et al. collected about 10 hours

of interaction from 50 users, which corresponded to about 400 individual mouse strokes

per user. They defined a stroke as the movement between two points in their memory

game. They then calculated 63 features for each stroke from this data, which can be seen

in Table 2.2. This was done for 50 strokes with the average of all the values taken to

make one block of features. The most discriminating features were selected using a greedy

Sequential Feature Selection (SFS) method and then fed into a sequential classifier. To train

the classifier they calculated features over the first half of the data collected and the second

half was used for testing the performance of the system. By using this method, Gamboa, et

al. [11] were able to achieve an EER of 2% using ninety seconds of interaction.

Ahmed, et al. [14], used real operating conditions and monitored a user’s mouse

activity during their daily activity. The data collection was performed by installing

interception software on each of the user’s workstations, which recorded mouse activity

12

every quarter of a second and periodically sent the data back to a detection server placed

on their network. Due to the fact that participants used their own workstations, the type of

mouse, pointer speed and screen resolution could not be controlled, however they do not

think this affected their results. The interception software was installed on the machines

of 22 participants leading to 998 sessions being recorded with an average of almost 13

hours of input per user. From this data Ahmed, et al. [14], generated 39 different features

for each user, to include things like movement speed compared to direction, an action

type histogram, movement type histogram and many more. The full list is displayed in

Table 2.2. These features were then fed into an ANN which was used as the classifier. The

neural network was configured to automatically place a higher weight to features that it

deemed the most reliable or discriminating based on the input data. The neural network

used was a feed-forward multilayer perception network consisting of three layers, and 39

nodes, trained using the Levenberg-Marquardt back propagation algorithm. In order to

facilitate dynamic authentication in their experiment, the user’s data was sliced into blocks

of 2,000 actions. From their research, Ahmed, et al. [14], were able to achieve a FAR of

2.4649% and a FRR of 2.4614%.

Shen, et al. [19], also used mouse based biometrics with an SVM to try and further

improve on the results seen by Ahmed et al. [14]. Shen, et al.[19], similarly asked

participants to install a data collector on their workstation which would record their mouse

activity during a normal day of computer use. Once again this implies that the exact type

of mouse used by the participants was not controlled however it was presumed to remain

constant over the testing period. They were able to collect data from 20 users over a period

of two months recording at a frequency of 100 hertz. From this Shen et al. [19], calculated

45 features similar to those mentioned above and are displayed Table 2.2. They then used

SFS and Plus-M-Minus-R (PMMR) to determine the most discriminating set of features for

the data being used. The hypo-optimum features were tested on both an ANN and SVM.

13

Table 2.2: Mouse modality features from previous work.

Article Features Calculated Classifier

Min, max, std dev, and min-max of each per stroke:

- Horizontal and vertical coordinate vector
- Angle of the path tangent with the x axis
- Curvature Sequential

Gamboa, et al. [11] - Horizontal, vertical, tangential and angular velocity classifier
- Tangential acceleration and jerk
- Time and length of the stoke
- Straightness, jitter, paused time and paused time ratio
- High curvature critical points, and time to click

- Movement speed compared to travel direction
- Average movement speed per direction

Ahmed, et al. [14] - Movement direction histogram ANN
- Average movement speed per action type
- Travel distance histogram
- Movement elapsed time histogram

- Mouse action histogram
- Mouse silence ratio
- Distribution of actions on the screen
- Distribution of movement distances

Shen, et al. [19] - Distribution of movement directions SVM
- Single-click interval times
- Double-click interval times
- Average movement speed compared to travel distance
- Extreme movement speed compared to travel distance

Angle metrics calculated between the endpoints of movements:

- Direction: angle between the horizontal and line of travel
- Angle of curvature (AOC): angle formed by three consecutive

Zheng, et al. [12] points A,B,C the AOC is angle ABC SVM
- Curvature distance: ratio of the distance from point A to C

and perpendicular distance from B to the line AC
- Movement speed
- Pause and click time

Features were calculated on 30 evenly sized blocks for the known user and 45 total samples

from nine different malicious users. By doing this Shen, et al. [19], were able to report a

FAR of 1.86% and a FRR of 3.46% when using a SVM with the PMMR method of feature

selection. Shen, et al. [18, 35, 39] also published three other articles on mouse dynamics

14

which were not included in this thesis due to a lack of improvement on the results published

in the work mentioned in this paragraph [19].

Zheng, et al. [12] derived a different approach that involved using a point by point

calculation of angles from the endpoints of consecutive mouse movements. Two tests were

performed, one that was controlled and a second that used a web interface and forum to

capture the user’s mouse movements meaning screen resolution, and mouse type could not

be monitored. The controlled data set contained individuals who were asked to perform

routine tasks on their workstation whereas the field group contained mouse movements

from over 1,000 unique users on a forum page. From this data Zheng generated features on

blocks of 25 point and click actions for a given user. The statistical features were calculated

between each set of individual points and are listed in Table 2.2. To perform classification

a SVM was used from the LibSVM 3.0 package with the Radial Basis Function (RBF) as

the kernel function. Zheng, et al. were focused on dynamic authentication and made the

point that their methods needed less user input data than any previous methods. They were

able to achieve an EER of 1.3% when using a block size that contained 25 point and click

actions however, it should be noted that to achieve these results 500 training blocks of 25

point and click actions were still needed per user.

2.6 Graphical User Interface Interaction

The core concept behind using a user’s GUI interaction style for biometrics has its

roots in a method called command line profiling. Command line profiling [40], monitors

the commands a user sent a command line based system, such as UNIX, in order to create

an Intrusion Detection System (IDS). The idea behind the concept was that different people

use different sets of commands to perform the same core task. This work was followed up

by Maxion, et al. [38], and Coull, et al. [8], who achieved promising results but were

not accurate enough to create a deployable system. GUI interaction based biometrics

can be thought of in the same manner as command line profiling. When a user wants

15

to accomplish a task on the system, there are often many different modalities that can

be used. This includes entirely different programs that perform the same end task, using

keyboard shortcuts versus GUI buttons, etc. When thinking of interacting with the GUI

by sending commands one can draw parallels between command line profiling and GUI

interaction in terms of their use as a biometric technique. Previous work has shown that

analyzing the modalities of a user’s interaction result in a promising biometric technique

[7, 9, 15–17, 22].

Pusara, et al. [7], did an initial look into using GUI based interaction. Their goal was to

derive a method that could be used for continuous authentication or user re-authentication

as Pusara called it. Mouse data was collected from 18 users while interacting with Internet

Explorer. A total of 10,000 unique cursor locations were sampled which took about two

hours per subject. The data collected included mouse wheel movements, single or double

clicks and mouse movements outside of the Internet Explorer window. Similar features

were calculated as in the work of Gamboa, et al. [11], but there was more of a focus on

the number of times a specific action had occurred as opposed to how an individual action

occurred. The full list of features calculated by Pusara, et al. [7], can be seen in Table 2.3.

A C5.0 decision tree was used for classification without boosting through the data mining

tool See5. User re-authentication was simulated by dividing up the user’s session into

quarters. The first two were used for training the classifier, the third for parameter selection

and the last for testing. From their research Pusara, et al. [7], were able to achieve a FAR

of 0.43% and a FRR of 1.75%.

Garg, et al. [22], expanded on the work of Pusara, et al. [7], but focused more on

preventing masquerade attacks as opposed to user re-authentication. A masquerade attack

is defined by Garg, et al. as an attack that occurs when a person exploits a user’s credentials

to access a system when they are not entitled to do so. Both user re-authentication [7],

and masquerade attack have the same fundamental meaning however. Garg, et al. [22]

16

collected data from three users who varied from 9 to 50 collection sessions. The collection

software that was used extracted information such as keyboard activity, mouse movements

and events, as well as operating system related information such as when a process was

created or terminated. From this information the features calculated were very mouse

centric and can be seen in Table 2.3. There is however, no explanation as to why keyboard

and operating system based features were not derived from the collected data. Garg used a

SVM from the SVMLight software package as the classifier with the RBF kernel function. To

simulate the masquerade attack detection, a 10 minute sliding window was used throughout

the session such that features for the user would be calculated every minute of use. With

this method Garg, et al. [22] were able to achieve a 96.15% detection rate.

Before discussing the work done by Imsand, et al. it is important to explain the concept

of GUI messages. In the Windows operating system, the kernel produces messages that are

sent to applications informing them of user actions that may need responding to. These

messages contain information on how the user is interacting with the system, and they

can be intercepted and analyzed using hooks [29]. Capturing these messages provides an

additional biometric measure that attempts to expand the complete user interaction picture

over simply mouse and keyboard dynamics. For example if the user is scrolling a web page

it is possible to differentiate between the use of the mouse wheel, paging with the keyboard,

clicking the GUI down arrow, or using a click and drag method by monitoring the operating

system messages.

The most thorough GUI usage analysis has been done by Imsand, et al. [9, 15–

17]. Their work focuses on differentiating between what the users are doing and how

they are doing it by monitoring GUI messages. To do this each of the participants used

in his research were given a list of tasks to perform. These included word processing,

web browsing, searching, and file/folder manipulation within the Windows XP operating

system. By doing this it allowed Imsand, et al. to take the actions of the user out of

17

Table 2.3: Previous work GUI usage features.

Article Features Calculated Classifier

The mean, std dev, third moment of distance, angle and speed
between a pair of endpoints

Pusara, et al. [7] The mean, std dev, and third moment for X and Y coordinates C5.0
A count of the number of times each is recorded: Decision tree
- Mouse wheel, clicks outside of the testing area
- Single and double clicks for left and right buttons

- Average number of right and left mouse clicks
Garg, et al. [22] - Average distance traveled between mouse events SVM

- Average movement speed
- Movement direction

A count of each type of the following:
Imsand, et, al. [9] - User actions (clicks, key presses, etc.) Jaccard index

- Control types (Buttons, scroll bars, etc.) and ANN
- Processes/applications that generate messages

the equation and purely focus on their GUI interaction style. A total of 31 participants

completed the list of tasks five times with 30 minute breaks in between each session. The

data was collected by hooking kernel messages inside of Windows as mentioned above.

By capturing these messages Imsand, et al. were able to generate a set of features which

profiled the user’s actions. This included counts regarding the number of times certain user

actions, control types and processes were observed, as seen in Table 2.3. Three of the five

data sets were used for experimentation. The first two datasets were considered a block

and features were calculated over each of those datasets. The final set was then used for

testing. This style of data set slicing did not line up with some of the other works that

focused on dynamic authentication but it is believed this was done to preserve the integrity

of the task based testing method. Imsand, et al. used a pre-built ANN that is part of the

Matlab numerical analysis suite but was only able to achieve a successful identification rate

of 38.7%. It is also important to note that Imsand et al. [9, 15–17] were able to achieve their

best results using a Jaccard index which is designed to determine the differences between

two data sets. Using this comparison method a 77.1% identification rate was achieved.

18

Imsand also performed authentication experiments in which a FAR of 8.66% and FRR of

0.0% was produced using term frequency-inverse document frequency (TF-IDF) analysis.

Imsand, et al. [9, 15–17] noted that the ANN did not perform as desired due to overfitting.

2.7 Multi-Modal Biometric Techniques

Several instances of research have fused multiple forms of biometric based authentica-

tion methods in order to improve the accuracy of the overall system. Asha, et al. [4] com-

bined fingerprint biometrics with mouse dynamics in order to identify the users enrolled

in an e-learning class. Rabuzin, et al. [27] also make the case that combining multiple

biometric techniques would be beneficial in creating a more robust authentication method

for e-learning platforms. Other fusion combinations include voice and facial recognition;

fingerprint, voice, and iris; and iris and retinal features [33].

2.7.1 Fusion Methods.

Fusion of biometric modalities can occur in different ways. This has been explored in

the physical realm of biometrics but has yet to be heavily tested for behavioral biometrics.

According to Ross, et al. [36], in biometric systems fusion can occur by fusing features

together, fusing matching scores together, or a fusion of the decisions made by each

individual modality. Fusion of features is the simple concatenation of feature vectors from

multiple modalities to be input into the classifier [36]. Matching score fusion is specific to

physical biometrics so it will not be discussed in this thesis and decision level fusion uses

the results from each individual modalities classifier in order to make a final decision [36].

2.7.2 Fusion of Behavioral Biometrics.

Ahmed, et al. [13] integrated keyboard and mouse dynamics into a single architecture

that could act as an intrusion detection system. Twenty two subjects were asked to install a

monitoring system on their workstations that collected keystrokes and mouse information.

They ran the software for nine weeks. In regards to keystroke dynamics Ahmed calculated

both latencies and durations for digraphs and trigraphs [2] and used a neural network for

19

classification. For the mouse movements they calculated a subset of features from [14],

which appear in Table 2.2 and used a separate ANN for classification. The results from

these two classifiers were then presumably combined together via decision level fusion

however the exact fusion technique is not discussed by Ahmed, et al [13]. Doing this for all

22 users Ahmed, et al. [13] were able to achieve a FAR of 0.651% and a FRR of 1.312%.

Moskovitch, et al. [30] generated a framework for using behavioral biometrics in

computing for the purpose of protecting identity theft. They focused on both keyboard

and mouse dynamics but did not perform an experiment to back up their hypothesis.

Jagadeesan, et al. [26] researched the concept of user re-authentication that was first defined

by Pusara, et al. [7]. They studied a users mouse-to-keyboard interaction ratio to facilitate

user identification. The ratio compared the number of mouse events to the number of

keyboard events observed by their monitoring software. They used an analysis engine that

consisted of statistical analysis, a feed forward neural network with back propagation, and

k-nearest neighbor algorithm to achieve a user identification accuracy of 82.2% across all

applications tested. They noted it is important to differentiate between the applications

tested since the mouse to keyboard ratio is certainly tied to the application being used.

2.8 Concerns Regarding Biometric Authentication

Many of the discussed techniques demonstrate controlled experimental potential but

have been untested in the real world due to concerns resulting from biometric based

authentication to include: potential vulnerabilities, scalability of the technique, variability

of the user, and the privacy of the user’s actions.

Potential vulnerabilities exist in many different authentication systems whether it be

bugs in the code or a flaw in the overall system architecture. For a biometric system

the amount of time it takes to notice that a malicious user has begun interacting with the

computer is vital. A skilled hacker with the right tools at their disposal can achieve their

malicious intent extremely quick, on the order of minutes. For a system that authenticates

20

every few hours, or even every 30 minutes, a malicious user could be in and out of the

network before the biometric system alerts anyone. Current research has not put a large

emphasis on collecting data from an increasing number of modalities in order to collect

more user data in a shorter amount of time, thus trying to reduce the amount of time needed

to both train and test the biometric system.

Scaling the biometric technique into a real world environment has also been largely

ignored. Much of the previous research discussed requires a very large amount of training

data (months of interaction, or tens of thousands of user actions) for the system to achieve

an acceptable level of accuracy. In a real world environment this is not practical. If

a system is installed, the consumer would not be pleased with a month long lead time

required to achieve a reference signature for each user. The amount of participants used for

experimentation has not helped the scalability argument. Many of the previous works use

around 20 individuals where as a system deployed to a real world network could need to

monitor hundreds.

Variability of the user from day to day, and also over a long period of time, must be

taken into account for a biometric system to be considered robust. This is a legitimate

concern and other then mentioning the problem there has been a lack of research into how

to combat it. If a user breaks their arm, or injures their hand in someway, their typing and

mouse dynamics will not be the same [23]. The variability of a user’s biometrics over a

month or multiple years has also yet to be determined. Marsters [20] had three users in his

study record typing dynamics for 18 months and reported that there was little change seen

over this period of time however, this remains to be tested on a large scale or for any other

modalities.

When recording a users activity the issue of privacy is necessary to discuss. The most

common concern is a user’s passwords recorded from their keystroke dynamics. To side

step this Marsters [20] recording software did not store the chronological keystrokes. It

21

only kept the timing information for all keys and digraphs pressed so that no individual

words the user typed could be discovered even if the stored data fell into the wrong hands.

In this thesis these privacy issues are noted but are not of concern as test subjects will not

be entering sensitive information in the testing environment.

22

III. Experimental Design

This study fuses data from three modalities, the keyboard, mouse and Graphical User

Interface (GUI) to determine if the fused features generated from the keyboard,

mouse and GUI increase the performance of a system designed for dynamic authentication.

The following chapter presents the data collection method, collection environment and

participant tasks, followed by the features generated from the keyboard, mouse and GUI,

and finally the fusion system design.

3.1 Data Collection Software

In order to properly identify an individual via a biometric system, data about that user

must be collected. The target operating system for data collection in this experiment is

Windows 7 particularly because it is used for the Air Force standard desktop and makes

up over 45% of the worldwide market share as of January 2013. In the case of this

system, there are several different types of actions which dictate how the collection software

discussed below is developed. The first is user actions, such as mouse moves, mouse button

actions, or keys pressed. The name of the executing process/application and the system time

of when the action occurred is required and also the type of GUI control method that was

used during the user’s interaction. Two different data collection methods were assessed,

virtual machine introspection and a Windows driver.

3.1.1 Virtual Machine Introspection.

Virtual machine introspection involves collecting information from the target virtual

machine by installing monitoring software on the host machine. Introspection provides

several advantages, with the most important being the users working from inside of the

guest machines have no knowledge of the monitoring software and no way of tampering

with it. As depicted in Figure 3.1, with the monitoring software running in the Control

23

Domain (Dom0), all keystrokes and mouse events that occur in the Guest Domains could

be recorded. Keystrokes are monitored by modifying an open source keylogger for linux

called logkeys. This produces output that contains the key, whether it is a press event or

release event and the associated system time. To record mouse events a linux program

called XMacro was used and modified. XMacro recorded all mouse events as well as

coordinates of the pointer every 50 ms. Finally, a customized program that determined if

the virtual machine window was in focus was developed. This ensured that data collection

only occurs when the user is inside one of the guest domains. All of the data is stored in a

text file.

Figure 3.1: The architecture of the Xen hypervisor.

It was determined however, that introspection could not be used to collect the final

type of information, GUI control types. This is due to the fact that collecting messages

sent internal to the Windows operating system could not be performed fast enough with the

24

current introspection technology. These messages, which contain the type of GUI control

method the user employed, in the form of a window class name, could not be captured via

introspection.

3.1.2 Windows Driver.

In order to capture all of the necessary messages a Windows driver is developed. The

driver works by inserting itself into the Windows hook chain. The Windows operating

system maintains a hook chain for each different type of hook that can be installed. When

a message is generated that is associated with one of the given hook chains it is passed

down the chain so that all applications receive the message appropriately [29]. The hook

Application Programming Interface (API) provides the capability to install a hook and

monitor system messages for a single application or all applications. In order to install the

hook, a call to SetWindowsHookEx function is made which places the hook at the top of the

specified hook chain. The driver utilizes the WH GETMESSAGE hook which allows the

capture of messages relating to mouse and keyboard input as well as any other messages

posted to the message queue [29].

The intercepted messages lack certain necessary information such as the executing

process or application for which the message was generated. In order to get the process

name the GetWindowThreadProcessId and OpenProcess functions are used which are

provided by the Windows API. The OpenProcess function is used to open the process

object for reading so that the process name can be extracted.

In order to capture the GUI control types Imsand, et al. [9, 15–17] developed a method

that involves monitoring the window class names a user interacts with. In the Windows

operating system a window class is used to “define the default behavior of windows

belonging to that class” [28]. The Windows API presents a function called GetClassName

which returns the class name of a given window. Due to this, these classes, and thus the

class names are more general and can also change between applications, releases, or even

25

between service pack versions of Windows. For example Imsand, et al. [9, 15–17] who

used Windows XP, mentioned class names (text box, scroll bar, etc.) that were much more

readable than most of the class names discovered in this experiment using Windows 7, as

seen in Appendix A. Each application has the ability to register its own window classes

with the operating system which can result in a broad range of class names being collected

by the software, based on which applications are in use by a given user. A consequence of

window class names being general is they do not provide fine grained information such as

the name of the control used, therefore, controls like buttons are all counted the same. The

full list of class names discovered during testing can be seen in Appendix A.

Table 3.1: Output from the collection tool when recording keystrokes.

Process Description Time (ms) Event

file:///I|/My%20Documents/My%20Pictures/New%20Text%20Document%20(2).txt[2/20/2013 11:34:39 AM]

WINWORD.EXE Microsoft Word Document 1842991521 Keydown m
WINWORD.EXE Microsoft Word Document 1842991599 Keyup m
WINWORD.EXE Microsoft Word Document 1842991630 Keydown o
WINWORD.EXE Microsoft Word Document 1842991677 Keyup o
WINWORD.EXE Microsoft Word Document 1842991677 Keydown s
WINWORD.EXE Microsoft Word Document 1842991771 Keydown t
WINWORD.EXE Microsoft Word Document 1842991786 Keyup s
WINWORD.EXE Microsoft Word Document 1842991833 Keyup t

Table 3.2: Output from the collection tool when recording mouse events.

Process Time (ms) X Y Event

file:///I|/My%20Documents/My%20Pictures/New%20Text%20Document%20(2).txt[1/28/2013 10:32:16 AM]

WINWORD.EXE Microsoft Word Document 1842991521 Keydown m
WINWORD.EXE Microsoft Word Document 1842991599 Keyup m
WINWORD.EXE Microsoft Word Document 1842991630 Keydown o
WINWORD.EXE Microsoft Word Document 1842991677 Keyup o
WINWORD.EXE Microsoft Word Document 1842991677 Keydown s
WINWORD.EXE Microsoft Word Document 1842991771 Keydown t
WINWORD.EXE Microsoft Word Document 1842991786 Keyup s
WINWORD.EXE Microsoft Word Document 1842991833 Keyup t

chrome.exe 1843274320 1412 1179 MouseMove
chrome.exe 1843274382 1412 1179 MouseMove
chrome.exe 1843274382 1411 1179 MouseMove
chrome.exe 1843274398 1409 1179 MouseMove
chrome.exe 1843274413 1408 1180 MouseMove
chrome.exe 1843274538 1408 1180 LButtonDn
chrome.exe 1843274632 1408 1180 LButtonUp

26

The software is run by the testing moderator just as any other Microsoft executable,

and opens up a blank command shell while the program is executing. Quitting the software

is done by closing the command prompt or hitting Ctrl-Alt-F8. During execution all

captured messages are written to a text file in Unicode format on the machine where the

recording software is running. An example output from the driver can be seen in both

Table 3.1 and Table 3.2. The order of the output for each line includes the process name, a

brief description if one is available, the time the action occurred (in milliseconds since the

system was booted), the X and Y coordinates if the action is mouse related, and the type of

event the message was generated for.

The software collects messages as they are sent, so the operating system dictates the

resolution at which mouse movement events are recorded. In a typical recorded movement,

mouse move are registered about every 20 milliseconds. Key presses, releases, and mouse

button clicks are recorded when they are registered by the operating system in both the up

and down direction.

3.2 Collection Environment and Task Selection

1. The data collection was performed on a desktop configured with:

• Windows 7 Service Pack 1

• Microsoft Office Professional Plus 2010

• Internet Browsers

– Internet Explorer 9

– Firefox 15.0.1

– Google Chrome 23

The participants used a standard 104 key Windows keyboard, three button mouse with

a scroll wheel and had one monitor available with a resolution of 1024x768. Each of the

participants were required to perform three separate but similar internet based research

27

tasks. The three tasks asked users to research the pros and cons of installing wind power,

solar power and solar water heating at the Air Force Institute of Technology (AFIT) and

write a 400-500 word report on each, to include pictures and/or charts to their liking.

The exact document given to each participant can be seen in Appendix C. The topic of

the scavenger hunt was not essential to the experiment as the main goal was to have the

users interact with the machine by doing tasks like searching for text, switching between

applications, scrolling documents, choosing the type of applications to use, etc. This type

of task, while it is not completely free computer use, is more general than what Imsand

used in his GUI study where participants were asked to perform a structured task, but still

open enough to resemble a work related task.

In order to ensure that the driver continues to run throughout the testing period a batch

script is run. This batch script refreshes the directory where the output files are being

stored so that the proctor can ensure the files are continually growing while the participant

is working. In order to keep the command window visible a program is used called Always

On Top which when configured, forces the command window to remain on top of all other

windows. The command window is then resized so that it takes up a minimal portion of the

screen as seen in Figure 3.2.

3.3 Participant Selection

Thirty one participants came from the general population of AFIT. The majority of

the participants were graduate students but there were also instructors, professors and other

administrative personnel involved. Since the subjects were all some type of government

employee we were able to assume that they had basic computer skills with the Windows

operating system to include performing internet searches and the use of a Microsoft Office

application for composition. For this reason, no time was allotted for the user to get

comfortable with the system.

28

Figure 3.2: The collection environment.

1. Demographics were also taken on the participant population to include:

• Age range

• Current profession

• Highest degree of academic achievement

• Gender

• Dominant hand

• Opinion of computer skills

• Average daily computer use

• Source of computer skills

• Typing rate

Each of these questions are asked in order to asses if certain individuals had any

contributing factors from their background that may make them more or less likely to

have a higher classification accuracy within the biometric system. By analyzing a users

29

demographics, Imsand [9] was able to discover differences in his systems ability to profile

a user. The full survey given to each participant is displayed in Appendix D.

3.4 Feature Generation

After data collection, the raw data is processed to create features for classification. The

features calculated are selected from prior works because of their reoccurrence or due to

their promising results. As discussed in Section 2.3, previous work has split their collected

data up in a variety of ways in order to create a block over which a set of features are

calculated. In this system the data is chosen to be sliced on a task basis, meaning that a set

of features is generated over each of the three tasks a user completes as seen in Figure 3.3,

creating three feature vectors per user. This is chosen to ensure that enough data from each

modality is collected to allow the features to be consistent and also to not affect the count

based GUI features which were previously calculated over a task based feature generation

period by Imsand [9, 15–17].

User 1
 Task 1
 Task 2
 Task 3

User 1
 Feature Set 1
 Feature Set 2
 Feature Set 3

User 2
 Task 1
 Task 2
 Task 3

User 2
 Feature Set 1
 Feature Set 2
 Feature Set 3

…

User 31
 Task 1
 Task 2
 Task 3

User 31
 Feature Set 1
 Feature Set 2
 Feature Set 3

Figure 3.3: Features are generated for each user on a per task basis.

30

3.4.1 Keystroke Features.

The keystroke features are based off of the work of Marsters [20]. Two different types

of features were calculated, durations and latencies, displayed in Table 3.3. Marsters [20]

determined that the most consistent keystroke features were seen when the user had pressed

a key, or key digraph at least three times in the feature generation period. For this reason

the same method is used here and features are not calculated for keys or key combinations

pressed less than three times.

3.4.1.1 Keystroke Duration.

Keystroke durations include the mean time that each key is held down which can also

be described as the average difference in time between the depress and release of each key.

The total time as well as the number of times the key has been pressed is stored for each of

the 104 keys. This allows the mean duration of all presses for each key to be calculated.

3.4.1.2 Keystroke Latencies.

Keystroke latencies record the average time it takes for someone to transition between

two keys. For example when typing “in” the time between when the user depresses “i” and

depresses “n”. Using the key down times of every two pairs of adjacently pressed keys an

array of latencies can be derived. These are also stored in a similar way as the durations

by keeping track of the total latency and number of times the key combination has been

witnessed. With a 104 key keyboard this results in 10,816 possible digraph combinations,

most of which will never occur. Due to this, any features that never get assigned a value

for any user are removed as they do not add value for the classification algorithm.

The user pausing while typing is something that naturally occurs, and it can affect the

accuracy of the keystroke latency times. In this type of experiment there are several reasons

as to why the user might stop typing, to include if the user begins using the mouse, they

get distracted by something around them, or they are just pausing to gather their thoughts.

Latencies that have any type of mouse movements in between them are trivial to find and

31

are discarded since it is known that the user has switched away from typing. Hempstalk

[23], noticed that users often pause either after pressing the space bar or before pressing

the space bar in order to compose their thoughts. Since this has been consistently noticed it

is thought that these pauses could add identifiable information to a user’s latency times and

are therefore not removed on a threshold. If a user pauses due to a distraction in the room

or in their mind there is no way to determine this without monitoring them in some other

form than our software, such as with a camera, etc. Due to this, these types of pauses are

left in the data as they cannot be removed with out using a threshold on latency time.

Table 3.3: Keystroke features.

Feature Type Description

Duration Average duration each key is held down

Latency Average latency in transition between two key presses

3.4.2 Mouse Features.

The mouse features were derived from Ahmed, et al. [14], Zheng, et al. [12], and

Shen, et al. [19]. The calculation of each feature type is discussed below and listed in

Table 3.4. A portion of the features are movement based and require a movement to be

defined in order for the feature to be calculated. It was determined that there are two things

that can start a movement for the mouse cursor; they are a left button release or a period

of silence that goes to movement. If the cursor registers no movement for one second or

longer it is deemed to be a period of silence. The value of one second was selected to be

a reasonable measure for a period of silence since no previous work defined what interval

they used. All events recorded by the driver are in chronological order so movements are

discovered by iterating until a movement starter is found. Next the nearest movement ender

is located. There are three items that classify as a movement ender. They are a button press,

32

mouse wheel scroll, or mouse silence. The two points representing the start and end of the

movement are then saved along with all of the recorded points in between.

3.4.2.1 Average Speed per Movement Direction.

The average speed per movement direction records the users mouse movement speed

in eight different directions along the screen which are represented in Figure 3.4. Eight, 45

degree wide sectors were used by Ahmed,et al. [14] so the same is used here. In order to

determine the direction of movement, the angle between the coordinates of the movement

starter and movement ender is calculated. This is followed by the speed of the movement

using the distance formula and the time stamps associated with the beginning and end.

The speed values are converted to values that have the units of pixels per second for this

calculation and any other speed related values to follow.

. The average speed was calculated in each of the
eight movement directions.

. The average traveled distance for a specific period of
time, with respect to different movement directions,
was calculated.

From such data, we were able to build a usage pattern for
the different directions.

The mouse signature developed in this work consists of
seven measured factors illustrated in Table 2. Each factor
corresponds to a vector of numbers as illustrated later in the
paper. For each factor, we need to study its reproducibility
and its discrimination capability.

3.2 Detector Architecture and Settings

In order to acquire and process any biometric data, a
detection unit needed to be developed. To assist in the
design of our detector, prior to this work, we conducted an
exploratory study involving five users, none of whom were
involved in the validation experiments described later.

Users were asked to deploy our data collection software on
their machines and conduct their usual activities without
any restriction. We collected an average of 5,000 records per
user over a one-week period of time. The study was
exploratory in that it aimed at suggesting hypotheses rather
than testing hypotheses formed a priori. We studied the raw
mouse data collected from the five users in order to confirm
our intuitions on how this data can be processed for the
purpose of our work. This study helped us in both
designing the detector and identifying the proper limits
used in various system components. In general, a detection
unit consists of a biometrics interception device, a data
processing module, and a database to store biometrics
information.

The detection unit translates the biometrics information
into representative data, stores and compares different
results, and outputs the result of user identity verification.
Fig. 2 shows the design of the mouse dynamics detector.
The system consists of three units: data interception unit,
behavior analysis unit, and behavior comparison unit. The
data interception unit is responsible for transparently
intercepting and converting all mouse movements and
actions into meaningful information. The behavior analysis
unit is responsible for analyzing the processed data,
identifying working sessions, and modeling the data to
produce the mouse signature. The behavior comparison

AHMED AND TRAORE: A NEW BIOMETRIC TECHNOLOGY BASED ON MOUSE DYNAMICS 167

TABLE 1
Sample Raw Data Collected

Each row contains the characteristics of an intercepted mouse
movement.

Fig. 1. Mouse movement directions. For instance, direction number 1

represents all actions performed with angles between 0 degree and

45 degrees.

TABLE 2
Factors Involved in a Mouse Signature

Fig. 2. Mouse dynamics detector architecture.

Figure 3.4: Direction sectors of mouse movements [14].

3.4.2.2 Movement Direction Histogram.

The movement direction histogram contains the percentage of movements that the user

makes in each of the eight directions.

3.4.2.3 Travel Distance Histogram.

The travel distance histogram contains the percentage of the movements that a user

makes in certain distance ranges. All of the distance ranges are measured in pixels. The

33

histogram contains 3 values: short (0-300 pixels), medium (301-600 pixels) and long (601+

pixels). These ranges are from Shen, et al. [19] and due to the resolution of the screen in

their testing environment being 1024x768 as well.

3.4.2.4 Distribution of Actions on the Screen.

The distribution of actions made on the screen results in a histogram containing

the percentage of movements that end in nine different regions of the screen as seen in

Figure 3.5 [19].

1024

1 2 3

768 4 5 6

7 8 9

Figure 3.5: The nine screen regions.

3.4.2.5 Single Click Interval Times.

The click interval times are calculated for left and right button single clicks. The single

click interval times were calculated by subtracting the time of the down click from the time

of the up click, establishing an interval. The average and standard deviation of the intervals

for left and right single clicks are calculated and turned into four features.

3.4.2.6 Left Double Click Interval Times.

Double click interval times were calculated by determining the time between all

consecutive button down and button ups in the four event sequence. This lead to three

different intervals, and the total time is also used creating four intervals which are turned

into eight features by calculating the average and standard deviation for each interval.

34

3.4.2.7 Pause and Click Time.

The pause and click time is the amount of time it takes for the user to click the mouse

button after they have stopped moving the cursor. This was shown to be a discriminating

feature by Zheng, et al. [12]. The average and standard deviation is taken for both the right

and left button, generating four features.

3.4.2.8 Action Histogram.

The action histogram contains the percentage of actions of a given type made by the

user. It is made up of five different action types: the number of left, right and double clicks,

the number of mouse wheel events, and the number of click and drag actions in where the

user holds down the left button while moving the cursor.

3.4.2.9 Extreme Movement Speed Relative to Travel Distance.

The extreme movement speed made by a user in relation to travel distance is similar

to the travel distance histogram but instead looks for the largest recorded speed in a given

distance range. The same three range lengths are used from the travel distance histogram

but with the units of pixels per second.

3.4.2.10 Movement Elapsed Time Histogram.

The time it takes to complete each movement is calculated and stored. Using this

stored data, a histogram is created that has information about the number of movements

that fall into each time interval. Ahmed, et al. [14] split the histogram up using half second

intervals from 0-4 seconds so the same is done here.

3.4.2.11 Average Movement Speed Relative to Travel Distance.

The average movement speed for each travel distance [19] is calculated using

previously stored distance and speed calculations about each movement. The same travel

distances are used again from the travel distance histogram in order to determine the

average speed for short, medium and long movements.

35

Table 3.4: Mouse modality features.

Feature Description Calculation Details (# of Features)

Average Speed per Movement Direction [14] Average velocity in pixels/sec (8)

Movement Direction Histogram [14]
% of movement in each

of the 8 directions (8)

Travel Distance Histogram [14]
% of movements occurring in

each of 3 distance ranges (3)

Distribution of Actions on Screen [19]
% of actions ending in each

of the 9 screen regions (9)

L/R Single Click Interval Times [19]
Avg and St Dev for L/R

button click duration (4)

Left Double Click Interval Times [19]
Avg and St Dev for all consecutive

presses and releases (8)

Pause and Click Time [12]
Avg and St Dev between when

cursor stops and click occurs (4)

Action Histogram [14]
% of time each of the

5 core actions occur (5)

Extreme Movement Speed [19]
Largest recorded velocity (pixels/sec)

for each of the 3 distance ranges (3)

Movement Elapsed Time Histogram [14]
Histogram of movements based on

elapsed movement time (9)

Average Movement Speed Relative Avg movement velocity seen in

to Travel Distance [14] each of three travel distances (3)

3.4.3 GUI Features.

The features for the GUI usage analysis are calculated by determining the number of

times each message occurs as summarized in Table 3.5. This method follows Imsand’s

process [9], and enumerates differences between the usage styles of different individuals.

A counting method is used to translate the text output from the driver into numerical values

36

that the machine learning algorithms can utilize. In order to do this three different classes

of items are monitored: user actions, control types and executing processes.

3.4.3.1 User Actions.

This can be any type of user initiated action such as keystroke or mouse event. The

counts of each of these separate events are used as the feature values. Unlike for the

keystroke features, there is no limit on the number of times the user must make an action

for the feature to be counted, all are used.

3.4.3.2 Control Types.

This is represented by a count of each unique type of window class name, which gives

a general idea for the GUI buttons and controls that a person uses.

3.4.3.3 Processes Executed.

A count of the number of times each process is seen. This captures what processes or

applications the participant is using, as well as a rough estimate on the number of actions

that process was used for.

Table 3.5: GUI usage features.

Feature Type Description

User actions
Count of each type of user action observed

(mouse button clicks, key presses, etc.)

Control Types
The number of each type of GUI control message observed

(button, scroll bar, ToolbarWindow32)

Processes Executed The number of times each process name is observed

It is important to note that the entire sample space of the class names and processes is

not known before the feature generation occurs, and cannot easily be determined like the

entire space of key digraphs. In order to ensure all GUI features are generated, a known

37

values method is used. Each time the feature generator is run it updates a file containing

the list of known processes and class names that have been seen. This list is then used to

print out the features to the feature file. One disadvantage to listing the GUI features using

this known values method is that when a new user’s data set is added, if it contains a new

known value, all of the feature sets for every user must be updated to reflect the presence

of any new features introduced by the new user’s data. This is necessary when the number

of users who have features calculated is small, however once the number of users grows

larger the amount of new known values found is expected to greatly to diminish.

Updating the existing feature sets is done with minimal processing by a program that

adds the appropriate number of question marks, annotating missing values, to the end of all

previous users feature sets. In the feature file, the GUI related features are printed out last,

with the newly found features at the end of the GUI section making them the last features

listed for each user. This setup allows for missing values to simply be added at the end

of each previous users instance until all contain the proper number of features. Adding

missing values works for each user since it is known that no previous users have values for

the newly found GUI attributes. It is possible that once a sizable number of window class

names have been discovered this process could be stopped and only generate features for

the known set class names, ignoring any new class names, however in this experiment it is

necessary to ensure that all window class names that get collected are used.

3.5 Fusion System Design

To determine if the fusion of features from all of the modalities (keyboard, mouse and

the GUI) provide better results than the individual modalities by themselves, comparison

testing of each of the modalities individually, along with two fusion approaches, is

performed for multi-class and binary class datasets.

The first fusion approach, seen in Figure 3.7, involves feature fusion, combining all

of the features into one file that then has feature selection and classification performed on

38

it to produce results. In Figure 3.8 a decision level fusion technique is presented. Each

modality is classified individually, with the results of those classifications being fed into

an ensemble classifier that produces the final decision. Both of these experiments use all

31 participants who each provide three data samples for feature generation. All feature

selection and machine learning classification is done using the Weka data mining toolkit.

Three different classification algorithms are tested; BayesNet, LibSVM and the J48 (C4.5)

decision tree. BayesNet was used successfully in keystroke identification by Marsters [20],

LibSVM was successfully used by Shen, et al. [19] for classifying mouse dynamics and a

variant of the C4.5 decision tree was used by Pusara, et al. [7].

3.5.1 Datasets.

Before discussing the fusion techniques in detail, it is necessary to distinguish between

the two datasets that will be tested. Both a multi-class (identification) and binary-class

(authentication) dataset are tested for each individual modality and the two methods of

feature fusion.

3.5.1.1 Identification.

Identification is a multi-class classification problem. From the data, an ideal classifier

distinguishes and identifies the user that generated a given dataset, producing a response of

1-31. Identification classification testing is done with 3-fold cross-validation using two of

each users datasets for training and the third for testing.

3.5.1.2 Authentication.

Authentication is a binary classification problem. When using this method a classifier

is trained for each individual user. The classifier is given a set of features which represent

the known user, and also a sampling of feature sets that represent other users which are

not the known user. Remaining feature sets are then fed to the classifier and it is asked

to make a decision on whether that data belongs to the known user or not. This type of

experiment can lead to two different types of error. Type I error, in which a user who should

39

be authenticated is not, and Type II error in which a user who should not be authenticated

is. These errors are represented as the False Rejection Rate (FRR) and False Acceptance

Rate (FAR) respectively. The following is broken up into information on how the training

set is created for the classifier and what type of data the classifier is tested with.

In order to create the training set a data imbalance needs to be overcome. The data

imbalance occurs from distinguishing one user as the known user, and the remaining 30

as unknown users. This leads to only 3 feature vectors for the known user and 90 for

the unknown user, which can be seen in Figure 3.6. Due to the small number of training

samples that are available per known user, using all of the data for the unknown users

creates an imbalance in the training data (2 training sets for the known user and 60 for the

unknown users). In order to cut this imbalance down a random sampling of four unknown

data sets are used, as seen in Figure 3.6. This reduces the number of unknown to known

instances to a 2:1 ratio and improves results.

Known ¬Known ¬Known Known

3

1

Training Set

4 Unknown user
samples

2 Known user
samples

1 user x 3 samples = 3 30 users x 3 samples = 90

¬Known Known

90

2 4

Testing Set

30 unknown user
samples

1 Known user
sample

30

Total Feature Vectors

Figure 3.6: The composition of the training and testing dataset for authentication.

The testing data is selected from datasets that have not been used for training.

Figure 3.6 shows that the final unused dataset from the known user is added to the test

set along with one data set from each of the remaining 30 users, all of which are labeled

40

as unknown users. Using a test set from each user as opposed to just users who have been

trained on, allows for many more tests, but more importantly provides a more realistic

scenario where the classifier may be encountering testing data for an unknown user that it

has not been trained on.

Each of these testing and training cycles are performed three times per user to ensure

that all possible combinations of testing and training data are achieved with the three known

user samples. Due to the fact that the four unknown training instances, and the 30 unknown

testing instances are selected randomly, it is necessary to replicate the dataset multiple times

in order to achieve statistical normality. Each of the three known user combinations are

replicated 30 times, leading to 90 total training/testing dataset pairs per user. The average

of the FAR and FRR is taken over each of the three known user combinations for all 30

replications. This is done for all 31 users. The final FAR and FRR are then calculated by

taking the average over all 31 users.

291 features

65 features

10,920 features

291 features

65 features

10,920 features

Classifier 2

Feature
Selection Classifier 1

Classifiers

Decision

Feature
Selection

Decision Mouse strokes

GUI Msgs.

Keystrokes BayesN

LibSVM

BayesN

BayesN
LibSVM

J48

MDL

PCA

MDL

Mouse strokes

GUI Msgs.

Keystrokes

BayesN
LibSVM

J48

PCA/
MDL
Disc./
Wrap
eval

(330 features)

(80 features)

(11 features)

Figure 3.7: Feature level fusion.

3.5.2 Feature Level Fusion.

To test the feature fusion method represented by Figure 3.7, all features are combined

before any processing occurs. The full dataset is placed into one flat file and feature

41

selection is performed on the data as a whole. Comparison testing of different classifiers is

performed using the BayesNet, LibSVM and J48 machine learning algorithms. It should be

noted that the type of feature selection used is performed on a per classifier basis. BayesNet

requires discretized data so each dataset classified with BayesNet is passed through a

supervised discretizing filter based on Fayyad and Irani’s Minimum Description Length

(MDL) method [21]. LibSVM requires the data to be run through a Principle Components

Analysis (PCA) prior to being classified. Finally, since J48 can handle a wide variety of

data, the best feature selection method is found through preliminary testing to be a wrapper

evaluator using the best first search method. After performing feature selection the final

feature count for each classifier is reduced to the number seen in Table 3.6.

Table 3.6: The number of features used by each classifier after feature selection.

Classifier Feature Selection Final # of Features

BayesNet MDL 330

LibSVM PCA 80

J48 Wrapper Evaluator 11

3.5.3 Ensemble Based Decision Level Fusion.

In ensemble learning multiple classifiers make decisions on smaller pieces of a

larger dataset. These predictions are then combined into a single predictive model which

generally will have better performance than any of the individual classifiers alone [32]. In

Figure 3.8 the features from each modality are passed through their individual classifier

before they are fused together. The type of classifier used for each modality is based on the

results from the identification section in Table 4.2. In order to take the output from each of

the individual modality classifiers and turn it into usable data for the ensemble classifier, a

42

processing module uses the initial classifiers decisions to generate a set of features which

are used by the ensemble classifier.

291 features

65 features

10,920 features

291 features

65 features

10,920 features

Classifier 2

Feature
Selection Classifier 1

Classifiers

Decision

Feature
Selection

Decision Mouse strokes

GUI Msgs.

Keystrokes BayesN

LibSVM

BayesN

BayesN
LibSVM

J48

MDL

PCA

MDL

Mouse strokes

GUI Msgs.

Keystrokes

BayesN
LibSVM

J48

PCA/
MDL
Disc./
Wrap
eval

(330 features)

(80 features)

(11 features)

Figure 3.8: Ensemble based decision level fusion.

Three sets of testing and training data are generated for each of the 31 users, and once

again they are generated 30 times as discussed in Section 3.5.1.2. This is done for all three

modalities individually. Each of the testing and training set pairs, are then run through

their respective feature selection methods and classifier. A results file is produced for each

training and testing pair with one line of data in the results file per each instance tested from

the corresponding test file. Every result contains the class predicted by the classifier for

that instance, the classifiers confidence in it’s decision represented as a probability, and the

actual class of the test instance. An example output is displayed in Table 3.7. The feature

file for the final classifier contains three features, consisting of the confidence probability

from each of the three individual modality classifiers, and also a class value representing

the actual class of the instance. The percentages are expressed with respect to the known

user (a probability of 1.0). This means that if the predicted class was an unknown user (a

target probability of 0.0), 1 minus the confidence percentage is used, and if the predicted

class is the known users, the actual value is used. This is necessary to do in order for the

43

classifier to be able to determine the difference between the data representing the two class

values.

Table 3.7: Example output from a individual modality classifier.

Predicted Class Probability Actual Class

file:///I|/My%20Documents/My%20Pictures/output_1_0.arff.txt[2/21/2013 10:26:35 AM]

1 0.8053219426444527 1
0 0.9860154197012099 0
1 0.6758392920350555 0

It should be noted that it is possible to have a mix of decisions from the initial

classifiers as seen in Table 3.8. For example, one modality could predict the data is from

the known user, while the other two predict it is from the unknown meaning the initial

classifiers have made contradicting decisions. Ideally this allows the final classifier to

decide which modality should be alloted more significance in the final predictive model.

Table 3.8: Feature generation example for the ensemble classifier.

Modality Predicted Class Probability Actual Class Feature Value

Key 1 0.9526 1 0.9526

Mouse 1 0.8057 1 0.8057

GUI 0 0.9398 1 0.0602

Since there are 30 unknown user decisions made for every one known user decision,

the number of unknown user decisions that are used for creating the ensemble classifiers

feature file are reduced. This is done in order to create the best balance of training data

between the two class values for the ensemble classifier. With the large number of decisions

that occur over all combinations and replications, 10-fold cross-validation is used to assess

44

the performance of the ensemble classifier. The same three classifiers, BayesNet, LibSVM,

and J48, are tested as the ensemble classifier seen in Figure 3.8.

45

IV. Results

This chapter analyzes the classification accuracy of both fusion techniques and

determines if either is significantly more effective than the individual modalities on

their own. There is also an analysis of the individual modalities performance, comparison

of the fusion techniques to previous work, an analysis of how demographics may affect the

accuracy of the system, and a alternative way to divide the user generated data.

The 31 test subjects worked on three tasks for an average of 114 minutes. The

data collected included 10,446 keystrokes per user with 673 digraphs logged, and 77

of the 104 keys being pressed. An average of 335 mouse movements per session, 23

different processes used, and 147 window class names being registered. Based on this,

over nine thousand keyboard features were eliminated due to the fact that no feature values

were generated by any of the users. This occurred because of certain keys or two key

combinations never being hit by any user throughout the experiment, resulting in the

features adding no classification value.

Due to the fact that features were calculated over each task there are only three feature

vectors available per user for classification. This small number of feature vectors for each

user can cause data imbalance problems between the two class values, as described in

Section 3.5.1.2. This small number of feature vectors also required us to use 3-fold cross-

validation for identification testing, as opposed to a more standard 10-fold cross-validation

approach. Collecting a small amount of user data is not uncommon in this area of research

however, mainly due to the use of human subjects. Imsand, et al. [9, 15–17] used the same

technique, calculating feature vectors across tasks resulting in the same imbalance, having

just three feature vectors per user. Pusara, et al. [7], also used a similar method dividing

up their collected data into quarters, using two quarters for training, the third for parameter

selection, and the final quarter for testing. Finally, the setup of the authentication dataset

46

is inline with previous work [14, 19, 22] in terms of having to randomly select a subset

of the unknown user instances to create a balance between the two class values, known

and unknown. While this method does not provide a large amount of data to be used for

classification, it has been successfully implemented in previous work without adversely

affecting the results. To ensure that system performance did not occur due to chance,

statistical testing is also performed throughout this chapter. This is done to confirm that

the results are significant, allowing us to be more confident that the small number of user

samples did not cause atypical performance of the system.

In Section 4.5 each users data was divided up on a 10 minute time interval for feature

generation in order to try and create more samples so that 10-fold cross-validation could

be used for testing. However, this method drastically decreased the number of user actions

that each feature sample was generated over, hurting overall performance of the system.

Each of the classifiers and feature selection methods were tuned to provide the highest

accuracy, with the final parameters shown in Table 4.1. BayesNet was left in its default

configuration as provided by Weka. Different estimators and search algorithms were tested

but none outperformed the SimpleEstimator or the K2 search algorithm. LibSVM allows

for different kernel functions as well as the manipulation of several parameters for each.

The sigmoid kernel consistently generated the best results. An experiment was run inside

of Weka on the γ parameter and it was deteremined that setting it to 0.01 yielded the highest

classification accuracy. The J48 decision tree was tried with several feature selection

methods to include ReliefF and a discretization filter; however the wrapper evaluator

produced the best results. Parameters were also adjusted to include, using and not using

pruning, and adjusting the confidence factor, however none improved results over the Weka

defaults.

47

Table 4.1: Final parameters used for the selected algorithms.

Machine Learning Algorithm Final Parameters Selected

BayesNet MDL discretization [21] with Weka defaults

LibSVM
Principle component analysis

Sigmoid kernel, γ = 0.01

J48 Wrapper evaluator with Weka defaults

4.1 Feature Fusion Results

4.1.1 Identification (Multi-class Dataset).

From the identification results displayed in Table 4.2 it can be seen that the fusion

of features, using the method shown in Figure 3.7, performed better than any of the

individual modalities on their own. An identification percentage of 97.85% was achieved

using BayesNet which outperforms the keystroke, mouse and Graphical User Interface

(GUI) modalities when classified on their own. The high fusion percentages validate our

hypothesis that by combining features from multiple modalities, classification accuracy can

be improved. As can be seen, the keystroke features consistently performed better than the

other two modalities which is discussed in Section 4.1.3.

Table 4.2: Identification (multi-class) classification comparison results.

Identification (3-fold CV) (%)

Keyboard Mouse GUI Fusion

BayesNet 94.62 ± 3.72 20.43 ± 3.73 70.96 ± 3.23 97.85 ± 1.86

LibSVM 76.34 ± 1.86 69.89 ± 1.86 45.16 ± 14.78 74.19 ± 11.63

J48 66.67 ± 8.12 30.11 ± 6.72 40.86 ± 1.86 73.11 ± 4.93

48

Timing data regarding the classifiers is also important to note. As the BayesNet

performed much better in accuracy it also produced the quickest total classification time

when including the feature selection steps. A table representation of the data can be seen

in Appendix F. On average, including discretization, 3-fold cross-validation on the feature

fusion identification dataset was performed in 0.93 seconds with MDL discretization [21]

taking 1.2 seconds. LibSVM took 6.87 seconds for classification and 32.1 seconds for

principle component analysis, and J48 took only 0.56 seconds for classification but over 19

minutes for feature selection using the wrapper evaluator.

4.1.2 Authentication (Binary Class Dataset).

Identifying a user is nice, but being able to authenticate that user is the primary

goal behind this system. The results achieved when performing the authentication

experiment show similar trends with the multi-class dataset, as seen in Table 4.3. BayesNet

outperforms both LibSVM and J48 with a full fusion False Acceptance Rate (FAR) of

3.15% and False Rejection Rate (FRR) of 1.82% when implementing feature fusion.

Correcting the imbalance of data when performing the binary class experiment was

necessary in order to improve classification performance of the system. As mentioned,

the number of unknown user instances included in the training data was four. Figure 4.1

shows that using four instances, or a 2:1 ratio, generates the best results when taking both

FAR and FRR into account.

In order to ensure that the fusion results are significantly better than any of the

modalities on their own, significance testing is performed over the results of the trials.

Significance testing is performed using the Welch two sample t-test. A requirement of the

t-test is that the data be normally distributed. In order to determine if the data collected is

in fact normal, the Shapiro-Wilk normality test is used. A p-value of 0.78 was achieved,

implying that the null hypothesis is rejected (the data is not normally distributed), and

accepting the alternative hypothesis that the data is normally distributed. The Welch t-

49

0

5

10

15

20

3 4 5 6

%

Number of unknown user instances included

FAR

FRR

Figure 4.1: Relationship with the number of unknown user instances in the training set and

FAR/FRR for feature fusion.

test was selected because it is designed to determine whether a difference in two datasets

occurred simply due to chance or not. A standard significance level of 0.05 was selected

for the test. The significance results for the fusion technique can be seen in Table 4.4 for

FAR and Table 4.5 for FRR.

Table 4.3: Authentication (binary-class) classification comparison results.

Authentication FAR & FRR (%)

Keyboard Mouse GUI Fusion

BayesNet
FAR 3.51 ± 0.46 16.22 ± 1.30 18.03 ± 1.12 3.15 ± 0.55

FRR 4.62 ± 1.83 26.70 ± 3.47 20.29 ± 3.13 1.82 ± 1.13

LibSVM
FAR 15.52 ± 1.10 0.53 ± 0.28 8.78 ± 1.07 17.13 ± 1.35

FRR 22.94 ± 3.29 88.24 ± 3.22 45.63 ± 3.84 15.70 ± 3.19

J48
FAR 25.02 ± 1.61 32.03 ± 1.90 27.77 ± 1.73 26.15 ± 1.84

FRR 23.91 ± 3.48 29.93 ± 4.04 34.23 ± 3.99 26.77 ± 3.85

50

By looking at each of the p-values in Table 4.4 and Table 4.5 we can see that they

are much smaller than the significance level that was set. This means there is convincing

evidence that each of the outcomes recorded in Table 4.3 did not occur due to chance. The

feature fusion results in Table 4.3 are bolded to represent that they are significantly better

than any other results in the table. In Table 4.4 and Table 4.5 all results are recorded with

respect to the individual modality data. This means that a confidence interval range of

{0.09%, 0.61%} for fusion versus the keystroke modality, means there is 95% confidence

that the FAR of the keystrokes will be 0.09% to 0.61% higher than the fusion FAR. Looking

at all of the data in Table 4.4 and Table 4.5 it can be seen that the fusion technique is

statistically significantly in terms of its effectiveness for authentication when compared

to any individual modality by itself. The FAR value for mouse data produces the only

negative confidence interval, however this can be discounted because of it’s extremely high

FRR values.

Table 4.4: Significance of fusion FAR vs individual modalities FAR.

Comparison p-Value 95% Confidence Interval

Fusion vs. Key 0.008 {0.09%, 0.61%}

Fusion vs. Mouse < 0.001 {-2.40%, -2.85%}

Fusion vs. GUI < 0.001 {14.42%, 15.33%}

Table 4.5: Significance of fusion FRR vs individual modalities FRR.

Comparison p-Value 95% Confidence Interval

Fusion vs. Key < 0.001 {2.01%, 3.58%}

Fusion vs. Mouse < 0.001 {85.15%, 87.67%}

Fusion vs. GUI < 0.001 {17.23%, 19.68%}

51

4.1.3 Individual Modality Performance.

Keystroke features performed the best across all of the classification algorithms mainly

because of the large number captured during data collection. Marsters [20] determined that

a training block could be calculated effectively with as few as 300 keystrokes. On average

our participants generated 3,482 keystrokes per task, exceeding the number needed and

improving the classification accuracy of this modality, as it out performed both the mouse

and GUI consistently.

The highest identification rate seen for the mouse dataset was 69.89% using LibSVM.

This poor performance in comparison with prior work, is attributed to the lack of

movements during subject testing. Previous mouse dynamics work [14, 19], required 2,000

mouse actions per training block to achieve their EER of around 1-3 percent. When our

users performed the tasks, they generated anywhere from 50-250 movements per task with

an average of 335 movements in an entire session. This does not meet the requirements laid

out by Ahmed, et al. [14] and Shen, et al. [19] in order to achieve their level of performance

and thus resulted in the mouse features under performing.

The point to point mouse features derived by Zheng, et al. [12] were also included in

order to gauge their effectiveness. According to Zheng they needed far less testing data than

the features derived by Ahmed, et al. [14] and Shen, et al. [19]. Zheng’s work achieved an

EER of 1.30% using only 25 mouse movements in the test set. After implementing these

features, the feature fusion identification results using BayesNet dropped by 4.31%, and

Zheng’s mouse features on their own were only able to achieve an identification rate of

4.30% using LibSVM. For this reason these features were dropped from the dataset. It is

believed that the methods and datasets used for trainging and testing along with the large

amount of training data required by Zheng, et al. [12] was the reason for poor performance.

Even though the test set only needed 25 mouse movements, their training set still contained

12,500 mouse movements which we were not able to achieve from our data collection. It

52

is also believed that their point to point angle based calculations could vary greatly based

on the activity the user is performing at that given time.

The GUI features performed well given the unstructured nature of the task. Imsand

achieved an identification rate of 38% with a neural network. Using a BayesNet in this

experiment a 71% identification rate was achieved. It is thought that the broader task we

selected for the participants accentuated the preferences and tendencies that a user has

inside of the GUI. It is also feasible that allowing a user to perform free computer use

could further improve these results, however this would need to be tested.

4.1.4 Modality Data Imbalance.

Requiring each of the participants to type 400-500 words is likely what resulted in the

imbalance between the number of keystrokes and mouse strokes, as seen in Table 4.6. The

participants were encouraged to try and finish each task in 30 minutes in the interest of their

own time, but it is possible that this caused them to not fully perform the amount of mouse

interaction necessary. The similarity of the tasks also seemed to result in less actions being

taken in task three than task one. On average 126 mouse movements were recorded in task

one, 118 in task two and just 91 in task three. It is believed that this occurred because of

how the participants started to reuse general information pertaining to climate in the area,

and general information for introduction and concluding paragraphs.

Table 4.6: Achieved and desired number of actions per training block.

Modality Desired Actions Actions Achieved

Keystrokes 300 3,482

Mouse movements 2,000 111

GUI messages
Not specified 147 window class names

23 processes

53

A second hypothesis is that once participants found an informative website pertaining

to green energy technologies, they were able reuse that website for all three tasks. This

would cause them to spend less time researching, resulting in fewer mouse movements. It

should also be noted that number of keystrokes recorded declined across the three tasks

as well. An average of 3,780 were taken in task one, 3,523 in task two and 3,143 in

task three, likely for the same reasons as were just stated. For the GUI messages, there

was no threshold set by Imsand because of his structured task based testing however our

31 participants generated messages on 147 unique window class names from 23 different

processes, which are displayed in Appendix A and Appendix B respectively.

4.2 Ensemble Based Decision Level Fusion Classification Results

Ensemble Based, Decision Level (EBDL) fusion provides another method for fusing

the modalities (Figure 3.8). By combining the modalities together once they have been

individually feature selected and classified, it allows for increased accuracy compared to

what each of modalities provide on their own, and over feature fusion. The classifiers

used for the individual modalities were identified by the performance listed in Table 4.2.

BayesNet was selected for both the keystrokes and GUI messages while LibSVM was

chosen for the mouse strokes.

The classifier that performed the best as the ensemble classifier was the J48 with

bagging (Table 4.7). Bagging, also known as Bootstrap aggregating, generates multiple

versions of a classifier, J48 in this case, and uses a plurality voting scheme to make its

decision [24]. As with previous authentication tests above, due to the data imbalance

per class value, only one unknown test result was randomly selected, along with the one

good result to be placed in the ensemble classifiers feature file. As you can see from

Figure 4.2, the one-to-one ratio of unknown to known users data performed the best while

also outperforming feature fusion with a FAR of 2.65% and a FRR of 1.64%.

54

0

1

2

3

4

5

30:1 15:1 2:1 1:1

%

Ratio of unknown to known user instances

FAR

FRR

Figure 4.2: Relationship with the number of unknown user instances and FAR/FRR for

EBDL fusion.

Significance testing is performed comparing the EBDL fusion method to feature

fusion. Once again the Welch t-test was used with the results for EBDL, using the J48

with bagging, and feature fusion using BayesNet since these produced the best accuracy

for each technique respectively. This test was performed with a significance level set to

0.05. From Table 4.8 it can be seen that the ensemble based method provides convincing

evidence that it is more effective than feature fusion when comparing FAR’s, with a p-value

of 0.005 and a 95% confidence interval of {0.10%, 0.51%}. When comparing the FRR of

the two fusion methods, no significant difference can be seen based on a p-value of .80 and

confidence interval that includes zero.

This is statistically significant evidence that EBDL fusion improves accuracy over

feature fusion and each of the individual modalities. These values are bolded in Table 4.7

to show that this method is significantly better than all others when considering FAR and

FRR. By allowing each of the modalities to be both feature selected and classified in an

environment that could produce the best results for that modality, it helped to improve the

FAR of classification. For example, when using feature fusion the mouse features were run

55

Table 4.7: EBDL fusion authentication classification per machine learning algorithm

Ensemble Classifier Feature Fusion (%) EBDL Fusion (%)

BayesNet
FAR 3.15 ± 0.55 2.65 ± 0.10

FRR 1.82 ± 1.13 1.83 ± 0.10

LibSVM
FAR 17.13 ± 1.35 3.42 ± 0.02

FRR 15.70 ± 3.19 3.41 ± 0.03

J48 with Bagging
FAR 26.15 ± 1.84 2.65 ± 0.12

FRR 26.77 ± 3.85 1.64 ± 0.11

through discretization and the BayesNet where they were shown to perform very poorly

in Table 4.2. Due to this, it is likely that they did not add any discriminatory value to the

feature fusion tests. However, running them through PCA and LibSVM vastly improves

their classification accuracy which helped improve the results of EBDL fusion over feature

fusion.

Table 4.8: Significance of feature fusion vs. EBDL fusion.

Comparison p-Value 95% C.I.

False Acceptance Rate (FAR) 0.005 {0.10%, 0.51%}

False Rejection Rate (FRR) 0.80 {-0.35%, 0.46%}

4.3 Comparison with Prior Individual Modality Results

It needs to be noted that the best results presented from previous work on the

individual modalities are able to report a better FAR and FRR than appear here. However,

to achieve these results months of collection and hundred of hours worth of user interaction

needed to be collected for training. In this experiment an average of 76 minutes of

56

interaction was used for classifier training to include about 7,000 keystrokes and 220 mouse

actions during that time. In contrast Marsters, et al. [20] collected 18 months of keystroke

data to train their system to an Equal Error Rate (EER) of 0.27%, Ahmed, et al. [14]

collected over 12 hours of mouse interaction per user to achieve an EER of 2.46% and

Shen, et al. [19] recorded data from users for two months resulting in a FAR of 1.86%

and FRR of 3.46%. For a system fielded in a real world environment it is not practical

to wait this amount of time for the system to become fully trained. By using a fusion of

data from multiple modalities a machine learning algorithm requires far less training time

to accomplish similar classification results.

The amount of data required for testing is perhaps more important. An experienced

malicious user needs only a matter of minutes on a internal computer to impact a network.

In a system that is designed to detect and deter an insider threat there needs to be a

compromise between the number of actions a user must take to create a testing block,

and the accuracy of the system. Some of the previous work require less testing data than

our fusion system but this is offset by a very large amount of training data needed as can

be seen in Table 4.9. Another benefit to the fusion system is that it is able to capture a

malicious user’s actions regardless of whether they are using the keyboard or mouse to

accomplish their goal. By requiring only 36 minutes of user interaction to achieve an FAR

of 2.65% and FRR of 1.64%, fusion from multiple modalities helps to decrease the amount

of time required to achieve an acceptable testing set regardless of which modality the user

is interacting with.

Due to the classification improvement for these previous systems over time though,

it is thought that if more data could have been collected for each user, the classification

accuracy would be improved. Table 4.9 shows the number of actions required for both

the testing and training set used by previous work along with their best performance

classification accuracy. The work done by Imsand, et al. [9, 15–17] does not specify a

57

Table 4.9: Required number of testing and training actions per previous work.

Previous Work Training Actions Testing Actions Results

Marsters [20] >85,000 KS >300 KS, 3 Hrs EER 0.27%

Ahmed, et al. [14] 10,000 MM 2,000 MM EER 2.46%

Zheng, et al. [12] 12,500 MM 25 MM EER 1.30%

Imsand, et al. [9]
N/A N/A FAR 8.66%

FRR 0.0%

EBDL Fusion
7,000 KS, 220 MM, 3,500 KS, 110 MM, FAR 2.65%

72 minutes 36 minutes FRR 1.64%

precise number of actions because of their task based testing, so it is not specified. In

Table 4.9 KS stands for keystrokes, and MM for mouse movements.

4.4 Demographic Effects on Results

Demographics were taken on each participant in order to assess if there is any

correlation between performance of the system and the computer skills of a person, their

age, education level, dominant hand, etc. Ideally this information was collected, and the

tests performed, to determine if a certain type of user will be predisposed to better or worse

results from fusing multi-modal data together. All the collected information per participant

can be seen in Appendix E. It was theorized that computer skill and computer use could

result as discriminating factors since users who spend more time with a computer may be

more likely to act consistently across all three tasks for each of the modalities, keystrokes,

mouse dynamics and GUI usage patterns.

1. Tests were performed across the following groups:

• Opinion of computer skills

• Daily computer use

58

• Dominant hand

• Source of computer skills

• Typing speed (< 50, 51-65, 65+) Words per Minute

• Education level

• Age

Comparison testing between each of the possible answers to a demographic question

was performed using the results from fusion testing. An Analysis of Variance (ANOVA)

test was selected to determine if there are differences between any of the demographic

groups and their corresponding identification percentages. A significance level of 0.05 was

set for the tests.

Table 4.10: Significance of demographics on classification accuracy.

Demographic Comparison p-value Affects Classification

Opinion of computer skills 0.22 No

Daily computer use 0.93 No

Dominant hand 0.44 No

Source of computer skills 0.89 No

Typing speed 0.97 No

Education level 0.68 No

Age 0.67 No

Based on the significance level that was set, none of the demographics that were

recorded provided statistically significant evidence implying they affect the performance

of the system which can be seen in Table 4.10. The opinion of computer skills proved to be

the most likely to result in a difference, but the p-value was still outside of our significance

59

level. This is a positive result in that based on the demographics collected we can say that

the fusion technique does not have a bias to producing better results given the background

of the individual. The system worked equally well for all types of users in this experiment.

4.5 Alternate Data Division Results

Generating features using shorter sample time, was done to assess the performance

of the system when it has less data for calculating features. In order to produce more

feature samples per user, features were generated over a 10 minute time window as shown

in Figure 4.3. Each users raw data output from the collection tool was split into 10 minute

blocks for feature calculation. Features were generated over each of these 10 minute blocks.

This results in an average of nine feature samples per user as opposed to the three on

the previous tests. Each of the tests from above are run again on this 10 minute split

dataset. This includes the identification and authentication tests for feature fusion and each

individual modality, and EBDL fusion. By dividing the data up in to 10 minute intervalsthe

samples had an average of 735 keystrokes, 28 mouse movements, and 147 window class

names over 23 unique processes applied.

4.5.1 Identification (Multi-Class Dataset).

Identification testing used 10-fold cross-validation to measure performance of three

different classifiers, BayesNet, LibSVM, and J48, were tested with feature fusion.

Table 4.11 shows that feature fusion improves classification accuracy over each of the

individual modalities while using features calculated over 10 minutes of data. It should

also be noted that the overall classification accuracy of the system dropped when using

less data for calculating the feature sets. The features proved to be less reliable when

calculating over this smaller time window than as was shown in previous identification

testing (Section 4.1.1), which used features generated over each of the three tasks.

However, generating more feature samples allowed for 10-fold cross-validation to be used.

60

…
…

10 Min

User 1
 Task 1
 Task 2
 Task 3

User 1
 Feature Set 1
 Feature Set 2
 Feature Set 3

User 2
 Task 1
 Task 2
 Task 3

User 2
 Feature Set 1
 Feature Set 2
 Feature Set 3

…

User 31
 Task 1
 Task 2
 Task 3

User 31
 Feature Set 1
 Feature Set 2
 Feature Set 3

User 1

 Task 2
 Task 3

User 1
 Feature Set 1
 Feature Set 2
 Feature Set 3

User 2
 Task 1
 Task 2
 Task 3

User 2
 Feature Set 1
 Feature Set 2
 Feature Set 3

…

User 31
 Task 1
 Task 2
 Task 3

User 31
 Feature Set 1
 Feature Set 2
 Feature Set 3

User 1
 Task 1
 Task 2
 Task 3

Task 1

10 Min
10 Min

User 1
 Feature Set 1
 Feature Set 2
 Feature Set 3
 …

 Feature Set x
 Feature Set y
 Feature Set z
 …

…

10 Min

Task 2

10 Min
10 Min

…

User 31
 Task 1
 Task 2
 Task 3

…

Figure 4.3: Data division and feature generation process for the 10 minute data split.

This creates further confidence that feature fusion will consistently improve identification

classification over using an individual modality on its own.

Table 4.11: Identification (multi-class) classification comparison results.

Identification (10-fold CV) (%)

Keyboard Mouse GUI Fusion

BayesNet 91.31 ± 4.01 11.12 ± 4.00 44.81 ± 6.20 95.19 ± 3.37

LibSVM 72.19 ± 6.83 42.85 ± 8.52 38.92 ± 8.59 78.67 ± 6.65

J48 69.65 ± 7.85 25.67 ± 6.73 39.84 ± 6.77 73.32 ± 7.25

4.5.2 Authentication (Binary-Class Dataset).

The authentication dataset was also tested to asses the performance of the fusion

system while using 10 minutes of user interaction to generate feature samples. The training

61

and testing sets were as described above, but the number of feature samples in each training

and testing set had to be slightly modified in order to adjust for the larger number of

feature samples that were available per user. In order to match the experiment discussed in

Section 3.5.1.2 (authentication using the task based feature sets), the training and testing

sets were created in the following way.

4.5.2.1 Training and Testing Set Creation.

The known users feature samples were divided up into three separate groups with

roughly the same number of feature samples in each group. This was done to simulate the

three feature samples in the task based feature generation experiment (Section 3.5.1.2). By

doing this, two thirds of the known users feature samples could be used for the training set,

followed by one third for the testing set. For the following explanation the variable x is

defined as follows:

x =

⌊#o f KnownUserFeatureS amples
3

⌋
To train the classifier on the unknown user, x feature samples were randomly selected from

four unknown users. The testing set then consists of the final third of the known users

feature samples, which is of size x, and also one feature sample from all 30 unknown users.

Finally, this is replicated over all three possible combinations created by the three groups

of known users feature samples, allowing each of the three to be used in the testing set. The

three combinations are then replicated 30 times in order to achieve statistical normality due

to the random sampling.

By testing this authentication dataset the results displayed in Table 4.12 were

achieved. The classification accuracy of all classifiers dropped, similar to the results of the

identification dataset, due to the small number of user actions achieved over each feature

sample. The results achieved using feature fusion along with the BayesNet for classification

are bolded once again to represent that they produced statistically significant improvement

over each of the individual modalities.

62

Table 4.12: Authentication (binary-class) classification comparison results.

Authentication FAR & FRR (%)

Keyboard Mouse GUI Fusion

BayesNet
FAR 13.60 ± 0.71 24.83 ± 1.14 26.08 ± 1.09 12.10 ± 1.13

FRR 7.51 ± 1.38 31.48 ± 2.90 28.41 ± 2.59 5.36 ± 0.93

LibSVM
FAR 9.73 ± 0.78 16.27 ± 1.14 13.61 ± 1.15 12.80 ± 0.77

FRR 31.18 ± 2.02 43.18 ± 2.52 50.12 ± 2.89 18.81 ± 2.20

J48
FAR 20.39 ± 1.24 27.76 ± 1.53 21.94 ± 1.48 21.79 ± 1.49

FRR 18.00 ± 2.25 36.60 ± 3.15 31.89 ± 3.55 17.54 ± 2.43

To perform statistical testing, the data was once again proven to be approximately

normal using the Shapiro-Wilk normality test. The Welch t-test was then used in order to

asses if the difference between two datasets occurred due to chance or not. The feature

fusion dataset was compared to the results achieved for both FAR and FRR. The results

from the t-tests can be seen in Table 4.13 for FAR and Table 4.14 for FRR. Feature fusion

generates statistically significant improvement over each of the individual modalities in

terms of both FAR and FRR.

Table 4.13: Significance of fusion FAR vs individual modalities FAR.

Comparison p-Value 95% Confidence Interval

Fusion vs. Key < 0.001 {1.00%, 1.99%}

Fusion vs. Mouse < 0.001 {3.57%, 4.75%}

Fusion vs. GUI < 0.001 {14.12%, 15.27%}

63

Table 4.14: Significance of fusion FRR vs individual modalities FRR.

Comparison p-Value 95% Confidence Interval

Fusion vs. Key < 0.001 {1.53%, 2.76%}

Fusion vs. Mouse < 0.001 {36.82%, 38.81%}

Fusion vs. GUI < 0.001 {22.03%, 24.07%}

4.5.3 Ensemble Based, Decision Level Fusion.

EBDL fusion was also tested using the feature samples calculated over 10 minutes of

user interaction in order to asses if it would outperform feature fusion as was seen above in

Section 4.2. The individual modality classifiers were selected from the best results seen in

Section 4.5.1. BayesNet was used for Keystrokes and GUI features and LibSVM was used

for mouse movements. The ensemble classifier was tested using BayesNet, LibSVM, and

J48.

From the results displayed in Table 4.15 it can be seen that the J48 with Bagging still

produced the highest classification accuracy. Finally Table 4.16 shows that EBDL fusion

produces significant improvement over feature fusion in terms of the FAR, however feature

fusion produced significant improvement over EBDL fusion in terms of the FRR. Due

to this conflicting information, we cannot say for certain that either of the fusion methods

performed better than the other using the features calculated over the 10 minute interval. As

mentioned above though we can say that both of the fusion methods produced statistically

significant improvement over the individual modalities on their own.

4.6 Summary

Collecting user interactions from the keyboard, mouse and GUI, prevents a malicious

user from escaping the watchful eye of a system that is able to monitor all three at once.

On top of this, GUI usage analysis seeks to emphasize how the user interacts with the

64

Table 4.15: EBDL fusion authentication classification per machine learning algorithm

Ensemble Classifier Feature Fusion (%) EBDL Fusion (%)

BayesNet
FAR 12.10 ± 1.13 7.28 ± 0.78

FRR 5.36 ± 0.93 7.78 ± 0.88

LibSVM
FAR 12.80 ± 0.77 9.68 ± 0.84

FRR 18.81 ± 2.20 7.25 ± 0.76

J48 with Bagging
FAR 21.79 ± 1.49 7.64 ± 0.80

FRR 17.54 ± 2.43 7.50 ± 0.83

Table 4.16: Significance of feature fusion vs. EBDL fusion.

Comparison p-Value 95% C.I.

False Acceptance Rate (FAR) < 0.001 {3.96%, 4.95%}

False Rejection Rate (FRR) > 0.999 {-1.69%, -2.59%}

system, such as do they prefer keyboard shortcuts over GUI menus, page up/down versus

the scroll bar or scroll wheel, etc. There are thousands of minute differences between

how two different users interact with a computer system. Analyzing the entire picture of a

users interaction is shown to improve the accuracy and reliability of a behavioral biometric

system over using a singular modality. EBDL fusion significantly outperformed each

individual modality as well as feature fusion for the task based feature samples, producing a

FAR of 2.65% and FRR of 1.64%. These results are in line with previous singular modality

work but require less training and testing time to be achieved. By attempting to drop the

training and testing time even further, features were generated over a 10 minute interval.

This lead to respectable results with the system achieving an EER of 4.81% using BayesNet

65

for Identification, however the classification accuracy of the system was degraded because

of the smaller amount of user data that was available for feature generation per sample.

66

V. Conclusions

Authentication is traditionally based on something you know and/or something you

have such as a Common Access Card (CAC) and pin number or a username

and password, but biometric authentication relies on something that you are. Physical

biometrics such as fingerprint scanning and facial recognition have dominated behavioral

biometrics which include keystroke dynamics, mouse dynamics, signature recognition,

etc. in terms of real world implementation. However, the use of the keystrokes, mouse

dynamics and Graphical User Interface (GUI) interaction can be captured from existing

hardware throughout a user’s session without interrupting them in order to provide active

authentication.

5.1 Final Thoughts

There has previously been research into using keystrokes, mouse dynamics, and GUI

usage as separate biometric techniques but until now these three modalities have not been

combined into a single system. Thirty one participants performed three free computer

use research tasks resulting in an average interaction of 114 minutes including 10,446

keystrokes and 335 mouse movements. Using a Windows driver that captures messages

sent internal to the Windows 7 operating system, the participants were monitored in three

areas, their keystrokes, mouse actions, and GUI usage. Features were then generated on

the data gathered for each of the three modalities. Fusing multi-modal data together was

performed using feature fusion, where all modalities were feature selected and classified

as a whole, and also using Ensemble Based, Decision Level (EBDL) fusion, where each

modality was feature selected and classified on its own, with the results being used by

a final classifier to make a decision. Both fusion methods were tested, along with the

67

individual modalities on their own in order to determine whether fusion could increase the

performance of a biometric system.

The results show that EBDL fusion produced statistically significant improvement

over the singular modalities and feature fusion with a False Acceptance Rate (FAR) of

2.65% and a False Rejection Rate (FRR) of 1.64%. While this research has not been able

to out perform some of the results produced by the best individual modalities, the amount of

training and testing time needed to reach these results is far less than previously seen. This

is important to note due to the speed an insider threat would be able to disrupt a network

after gaining control of an unlocked computer. The systems ability to collect data from

all contact surfaces also makes it more robust than previous work that attempts to combat

an insider threat. Regardless of how the malicious user is interacting with the machine, a

system that fuses data from multiple modalities will be able to capture it.

The system and experiment discussed present a new approach to combining multiple

forms of behavioral biometrics into one architecture. This system fuses data from a users

keystrokes, mouse movements and GUI usage together for classification. The fusion of

data from multiple modalities requires less time, and user actions, during both training and

testing in order to achieve comparable results to previous work.

5.2 Future Work

The end goal of this type of biometric authentication system is to be deployed in a real

world environment where users are going about their daily tasks. In order for this to happen

several issues need to be addressed in future work. The first is the effectiveness of this

system when using free use data. Keystroke and mouse features have both been tested in

previous works in a free use environment however it remains to be seen if the GUI features

will scale to this type of data. Results are promising though given their improvement from

Imsand’s [9, 15–17] structured task testing to this experiment. Testing in this free use

68

environment also allows for more data collection per user, this means the system could be

tested on more than three feature vectors that were available in this experiment.

Second, is the way the data is divided up into training and testing sets in order to

perform active, on-line authentication. Previous work has done this in a variety of ways,

none of which has provided a way forward as to which method presents the most effective

solution. When considering data coming in from different modalities the data slicing

becomes even more difficult. Most published work has calculated features over a block

of data based on the number of actions contained in that block. However, a method for

doing this across multiple modalities needs to be researched. There are often long periods

of time when a user is interacting with only the mouse and not the keyboard or vice versa.

This presents a conflict for generating features across all modalities at the same time. When

creating this division there is also a balance that must be made between the amount of time

it takes to collect one training or testing set and the accuracy of the system. As as shown in

Section 4.5 when slicing data over a 10 minute interval the number of actions available for

generating features was reduced, which degraded the quality of the feature samples.

The accuracy and amount of training time required for these systems must continue

to improve if there is ever a hope for real world deployment. Overwhelming a network

administrator or users on a network with false rejections can ruin the usefulness of the

system and productivity of the organization. Even a system with a FRR of 0.01% will

incorrectly authenticate one user per hour on a network that has 100 users authenticating

10 times per hour. On the contrary though an extremely accurate system that requires on

the order of hours of data to authenticate a user is not of use. Skilled malicious users could

get their work done and be in another area code before anyone is alerted of what they have

done if the testing set requires too much data. As is seen throughout this thesis and previous

work there is often a trade off between the number of actions collected and the accuracy of

the system.

69

Appendix A: List of Windows 7 Window Class Names

BluetoothNotificationArea-

TaskSwitcherWnd DDEMLMom IconWindowClass

Static ERCAPPIPCRECEIVER CalcFrame

ATL:000007FEF52DD770 MSTaskListWClass CiceroUIWndFrame

COMTASKSWINDOWCLASS Breadcrumb Parent Progman

MSCTFIME UI DesktopLogoffPane DirectUIHWND

msctls progress32 ANIMATION TIMER HWND AUTHUI.DLL

Desktop top match Desktop OpenBox Host #32770

TaskListThumbnailWnd MSTaskSwWClass SearchEditBoxWrapperClass

TravelBand #43 NotifyIconOverflowWindow

DDEMLEvent Desktop NSCHost CicMarshalWndClass

TrayClockWClass FaxMonWinClass DV2ControlHost

DesktopDestinationList GDI+ Hook Window Class CabinetWClass

Groove.Class.BroadcastServices

msseces class Button .BroadcastReceiver

OleMainThreadWndClass tooltips class32 ReBarWindow32

ShellTabWindowClass ToolbarWindow32 Desktop More Programs Pane

DesktopSpecialFolders ExplorerBrowserNavigation Shell TrayWnd

MS WebcheckMonitor Search Box CicLoaderWndClass

SHELLDLL DefView Desktop User Picture SystemTray Main

PNIHiddenWnd ConsoleWindowClass ATL:000007FEFB8141F0

LivePreview Address Band Root Desktop Search Open View Edit

SysTreeView32 PropertyControlBase SysListView32

Desktop User Pane OleDdeWndClass Media Center SSO

RunDLL WorkerW TrayNotifyWnd

WindowsUpdate-

Dwm DesktopProgramsMFU NotificationWindow

Ghost ATL:000007FEF6C6D770 ATL:000007FEFB6E41F0

70

ATL:000007FEF3D452C0 TrayShowDesktopButtonWClass UniversalSearchBand

NamespaceTreeControl ATL:000007FEFBC641F0 CtrlNotifySink

PrintCacheLocalConnection-

ATL:000007FEFC4441F0 PrintCacheListenerWindow ListenerHiddenWindow

PrintTray Notify WndClass NManager LogMeInGui

TASKENGINEWINDOWCLASS ATL:000007FEFCD841F0 MMDEVAPI

SysShadow ATL:000007FEFC2F41F0 ScrollBar

ATL:000007FEF2D452C0 #32768 ATL:000007FEFCF441F0

ATL:000007FEFB2441F0 DUIViewWndClassName SysLink

ATL:000007FEFC4D41F0 ATL:000007FEF5E29D80 Flip3D

SysDragImage CLIPBRDWNDCLASS ATL:000007FEF38152C0

ATL:msctls progress32 ATL:000007FEFBFD41F0 ATL:000007FEF6269D80

ATL:000007FEF2DF52C0 SearchEditBoxFakeWindow ATL:000007FEF6274750

IME Auto-Suggest Dropdown ComboLBox

ATL:000007FEF5E34750 FloatNotifySink Notepad

ComboBox Photos CommandBar Photos NavigationBar

ATL:000007FEF01AA040 ATL:000007FEF01A9E40 ATL:000007FEF01A9400

Photos ButtonEx Photos NavigationPane Photos PhotoCanvas

Photo Lightweight Viewer AltTab KeyHookWnd ATL:000000013F846DC0

NativeHWNDHost VANUITooltip SysTabControl32

ATL:000007FEF5E99D80 ATL:000007FEF61552C0 ATL:000007FEF5EA4750

SyncMgrTrayIconClass DisplaySwitchUIWnd ATL:000007FEFB5641F0

ATL:000000013F186DC0 ATL:000007FEF7319D80 ATL:000007FEFB9D41F0

ATL:000007FEF4DA9D80 ATL:000007FEF4DB4750 ATL:000007FEF25E52C0

ATL:000007FEFBEA41F0 ATL:000007FEF56A9D80

71

Appendix B: List of Windows 7 Processes

Explorer.exe calc.exe WINWORD.EXE

iexplore.exe ActiveAuthentication.exe EXCEL.EXE

install reader11 en gtba chra

cmd.exe POWERPNT.EXE dy aih.exe

Eula.exe setup.exe chrome.exe

AcroRd32.exe rundll32.exe WerFault.exe

ExcelPasswordDemo.exe Dwm.exe firefox.exe

notepad.exe DllHost.exe sethc.exe

DisplaySwitch.exe conhost.exe

72

Appendix C: Tasks Given to Testing Participants

Task 1

Being “green” can involve several different facets. This could include using an energy

source that is sustainable into the future as well as friendly to the environment such as solar,

wind or tidal energy. Being “green” can also involve making changes to current architecture

of a building or generating new ways to operate in order to consume less energy.

The Air Force Institute of Technology (AFIT) is looking for the best way to become a

“green” institution. They need your help determining the return on investment for installing

a Wind Turbine behind the facility.

1. The deliverable for this task is a 400-500 word report detailing your findings and

recommendation on the best course of action for turning Air Force Institute of

Technology (AFIT)into a “green” campus.

• You should use the internet to find factual information to include in your report.

Documentation of your sources does not need to occur but please do not copy

and paste information directly from a web page.

• Factors to take into consideration when making your recommendation

– Estimated cost of the solution

– Environmental factors that make a wind turbine efficient

– Estimated energy savings and/or power generated

– Life expectancy of the system

The costs and benefits may be best expressed in a table. Also, please include any

other information you deem to be necessary. After completing the report, copy it to the

given removable hard drive.

73

Task 2

Being “green” can involve several different facets. This could include using an energy

source that is sustainable into the future as well as friendly to the environment such as solar,

wind or tidal energy. Being “green” can also involve making changes to current architecture

of a building or generating new ways to operate in order to consume less energy.

The Air Force Institute of Technology (AFIT) is looking for the best way to become a

“green” institution. They need your help determining the return on investment for installing

50 square meters of solar energy photovoltaic cells on the top of building 642.

1. The deliverable for this task is a 400-500 word report detailing your findings and

recommendation on the best course of action for turning AFITinto a “green” campus.

• You should use the internet to find factual information to include in your report.

Documentation of your sources does not need to occur but please do not copy

and paste information directly from a web page.

• Factors to take into consideration when making your recommendation

– Estimated cost of the solution

– Environmental factors that make solar cells efficient

– Estimated energy savings and/or power generated

– Life expectancy of the system

The costs and benefits may be best expressed in a table. Also, please include any

other information you deem to be necessary. After completing the report, copy it to the

given removable hard drive.

74

Task 3

Being “green” can involve several different facets. This could include using an energy

source that is sustainable into the future as well as friendly to the environment such as solar,

wind or tidal energy. Being “green” can also involve making changes to current architecture

of a building or generating new ways to operate in order to consume less energy.

The Air Force Institute of Technology (AFIT) is looking for the best way to become a

“green” institution. They need your help determining the return on investment for installing

for installing 50 square meters of solar water heating on building 640.

1. The deliverable for this task is a 400-500 word report detailing your findings and

recommendation on the best course of action for turning AFITinto a “green” campus.

• You should use the internet to find factual information to include in your report.

Documentation of your sources does not need to occur but please do not copy

and paste information directly from a web page.

• Factors to take into consideration when making your recommendation

– Estimated cost of the solution

– Environmental factors that make solar water heating efficient

– Estimated energy savings and/or power generated

– Life expectancy of the system

The costs and benefits may be best expressed in a table. Also, please include any

other information you deem to be necessary. After completing the report, copy it to the

given removable hard drive.

75

Appendix D: Demographic Survey Given to All Participants

Demographic Survey

Date:

Current Profession:

Highest Degree of Academic Achievement:

Gender: M F Abstain

Age: 18-24 25-39 40-65 65+

Dominant Hand: Left Right

How Strong are your computer skills? (Circle one)

Below Average Average Above Average Very Strong

Average daily computer usage in hours: (Circle one)

0-2 2-4 4-6 6-8 8+

What is the source of your computer skills? (Circle all that apply)

Self taught Course/Instruction Computer related degree

What is your average typing speed? Please take the typing test and record your speed

here:

76

Appendix E: Demographic Information for All Participants

1. Legend:

• ST: Self taught

• CI: Course/instruction

• CD: Computer related degree (Computer science, computer engineering, etc.)

ID

Profession Ed. Gender Age Dominate Opinion of Daily Source of Typing

Level Hand Computer Computer Computer Rate

Skills Use (Hrs) Skills

1 Student M.S. M 25-39 R Average 6-8 ST 50

2 Student M.S. F 25-39 R Above avg 6-8 ST,CI 55

3 Student B.S. M 25-39 R Very good 6-8 ST,CI 58

4 IT B.S. M 25-39 L Very good 4-6 CD 40

5 Student B.S. M 18-24 R Average 6-8 ST,CI 67

6 Instructor M.S. M 40-65 R Above avg 6-8 CD N/A

7 Instructor M.S. M 25-39 R Very good 2-4 CD N/A

8 Instructor M.S. F 40-65 R Average 4-6 ST,CI N/A

9 Instructor B.S. M 25-39 R Very good 8+ CD N/A

10 Instructor M.S. M 25-39 R Below Avg 4-6 ST N/A

11 Instructor M.S. M 25-39 R Very good 6-8 ST,CI N/A

12 Student B.S. M 25-39 R Very good 6-8 CD 59

13 Student B.S. M 18-24 R Above avg 2-4 ST,CI 53

14 Engineer B.S. F 18-24 R Average 8+ CI 51

15 Engineer B.S. M 25-29 R Average 2-4 CI 49

16 Student M.S. F 25-39 R Above avg 6-8 ST 68

17 Student B.S. M 25-39 L Very good 6-8 ST 60

18 Professor PhD M 25-39 R Above avg 6-8 ST,CI 90

19 Student M.S. M 25-39 L Above avg 4-6 CI 51

77

20 Student B.S. M 25-39 L Above avg 4-6 ST,CI 43

21 Student M.S. F 25-39 R Above avg 6-8 ST,CI 54

22 Professor PhD M 40-65 R Very good 2-4 ST,CI 50

23 Student B.S. M 25-39 R Very good 8+ CD 37

24 Staff PhD F 25-39 R Very good 6-8 CI 33

25 Student B.S. F 18-24 R Average ST 6-8 58

26 Student M.S. M 25-39 R Very good 8+ ST 79

27 Student B.S. M 25-39 R Very good 8+ CD 74

28 Student B.S. M 25-39 R Above avg 6-8 ST,CI 58

29 Student M.S. M 25-39 R Average 4-6 ST,CI 46

30 Student M.S. M 25-39 L Average 2-4 ST 28

31 Student B.S. M 18-24 R Above avg 2-4 ST 44

78

Appendix F: Multi-class Classification Timing Information Using the Fusion Dataset

Algorithm Feature Selection Time (sec) Classification Time (sec) Total (sec)

BayesNet 1.2 0.93 2.13

LibSVM 32.1 6.87 38.97

J48 1143 0.56 1143.56

79

Appendix G: Institutional Review Board Approval

80

81

82

Bibliography

[1] A., Monrose F. Rubin. “Authentication via Keystroke Dynamics”. ACM Conference
on Computer and Communications Security, 48–56. 1997.

[2] A., Monrose F. Rubin. “Keystroke Dynamics as a Biometric for Authentication”.
Future Generation Computer Systems, 16:351–359, 2000.

[3] Bishop, Matt. Computer Security: Art and Science. Addison Wesley, 2003.

[4] C., Asha S. Chellappan. “Authentication of E-Learners Using Multimodal Biometric
Technology”. International Symposium on Biometrics and Security Technologies, 1–
6. 2008.

[5] C., Bergadano F. Gunetti D. Picardi. “User Authentication through Keystroke
Dynamics”. ACM Transactions on Information and System Security, 5:367–397,
2002.

[6] C., Gunetti D. Picardi. “Keystroke Analysis of Free Text”. ACM Transactions on
Information and System Security, 8:312–347, 2005.

[7] C., Pusara M. Brodley. “User Re-Authentication via Mouse Movements”. ACM
Workshop on Visualization and Data Mining for Computer Security, 1–8. 2004.

[8] E., Coull S. Branch J. Szymanski B. Breimer. “Intrusion Detection: A Bioinformatics
Approach”. IEEE Computer Security Applications Conference, 1–10. 2003.

[9] E., Imsand. Applications of GUI Usage Analysis. Ph.D. thesis, Auburn University,
2008.

[10] G., Joyce R. Gupta. “Identity Authentication Based on Keystroke Latencies”.
Communications of the ACM, 33:168–176, 1990.

[11] Gamboa, Fred A., H. “A Behavioural Biometric System Based on Human Computer
Interaction”. Proceedings of SPIE, Biometric Technology for Human Identification,
5404:381–392, 2004.

[12] H., Zheng N. Paloski A. Wang. “An Efficient User Verification System via Mouse
Movements”. ACM Conference on Computer and Communications Security, 1–12.
2011.

[13] I., Ahmed A. Traore. “Anomaly Intrusion Detection based on Biometrics”. IEEE
Workshop on Information Assurance, 1–7. 2005.

[14] I., Ahmed A. Traore. “A New Biometric Technology Based on Mouse Dynamics”.
IEEE Transactions on Dependable and Secure Computing, 4:165–179, 2007.

83

[15] J., Imsand E. Garrett D. Hamilton. “User Identification Using GUI Manipulation
Patterns and Artificial Neural Networks”. IEEE Symposium on Computational
Intelligence in Cyber Security, 1–6. 2009.

[16] J., Imsand E. Hamilton. “GUI Usage Analysis for Masquerade Detection”. IEEE
Workshop on Information Assurance, 1–7. 2007.

[17] J., Imsand E. Hamilton. “Masquerade Detection through GUIID”. IEEE
GLOBECOM, 1–5. 2008.

[18] J., Shen C. Cai Z. Guan X. Sha H. Du. “Feature Analysis of Mouse Dynamics in
Identity Authentication and Monitoring”. IEEE ICC Proceedings, 1–5. 2009.

[19] J., Shen C. Guan X. Cai. “A Hypo-Optimum Feature Selection Strategy for
Mouse Dynamics in Continuous Identity Authentication and Monitoring”. IEEE
International Conference on Information Theory and Information Security, 349–353.
2010.

[20] J.D., Marsters. Keystroke Dynamics as a Biometric. Ph.D. thesis, University of
Southampton, 2009.

[21] K., Fayyad U. Irani. “Multi-Interval Discretization of Continuous-Valued Attributes
for Classification Learning”. Thirteenth International Joint Conference on Artificial
Intelligence, 1–6. 1993.

[22] K., Garg A. Rahalkar R. Upadhyaya S. Kwiat. “Profiling Users in GUI Based Systems
for Masquerade Detection”. IEEE Workshop on Information Assurance, 1–7. 2006.

[23] K., Hempstalk. Continuous Typist Verification using Machine Learning. Ph.D. thesis,
The University of Waikato, 2009.

[24] L., Breiman. “Bagging Predictors”. Machine Learning, 24:123–140, 1996.

[25] M., Bhattacharyya D. Ranjan R. Alisherov F. Choi. “Biometric Authentic: A
Review”. International Journal of Service, Science and Technology, 2:13–28, 2009.

[26] M., Jagadeesan H. Hsiao. “A Novel Approach to Design of User Re-Authentication
Systems”. IEEE Conference on Biometrics: Theory, Applications and Systems, 1–6.
2009.

[27] M., Rabuzin K Baca M. Sajko. “E-Learning: Biometrics as a Security Factor”.
International Multi-Conference on Computing in the Global Information Technology,
1–6. 2006.

[28] Microsoft. “About Window Classes”. Microsoft Developer Netowrk, October 2012.

[29] Microsoft. “Hooks Overview”. Microsoft Developer Network, September 2012.

84

[30] Mosokovitch R. Feher C. Messerman A. Kirschnick N. Mustafic T. Camtepe A.
Lohlein B. Heister U. Moller S. Rokach L. Elovic, Y. “Identity Theft, Computers and
Behavioral Biometrics”. IEEE Conference on Intelligence and Security Informatics,
155–160. 2009.

[31] N., Gaines R. Lisowski W. Press S. Shapiro. Authentication by Keystroke Timing:
Some Preliminary Results. Technical report, Rand Corporation, 1980.

[32] Opitz, R, D. Maclin. “Popular Ensemble Methods: An Empirical Study”. Journal of
Artificial Intelligence Research, 11:169–198, 1999.

[33] P., Singhal R. Singh N. Jain. “Towards an Integrated Biometric Technique”.
International Journal of Computer Application, 42:20–23, 2012.

[34] R., Matyas V. Zdenek. “Toward Reliable User Authentication through Biometrics”.
IEEE Security and Privacy, May/June:45–49, 2003.

[35] R., Shen C. Cai Z. Guan X. Du Y. Maxion. “User Authentication Through Mouse
Dynamics”. IEEE Transactions on Information Forensics and Security, 8:16–30,
2013.

[36] Ross, A, A Jain. “Information Fusion in Biometrics”. Pattern Recognition Letters,
24:2115–2125, 2003.

[37] S.J., Brown M. Rogers. “User Identification via Keystroke Characteristics of Typed
Names using Neural Networks”. International Journal of Man-Machine Studies,
39:999–1014, 1993.

[38] T., Maxion R. Townsend. “Masquerade Detection Using Truncated Command Lines”.
IEEE International Conference on Dependable Systems and Networks, 1–10. 2002.

[39] X., Shen C. Cai Z. Guan. “Continuous Authentication for Mouse Dynamics: A
Pattern-Growth Approach”. IEEE International Conference on Dependable Systems
and Networks, 1–12. 2012.

[40] Y., Schonlau M. DuMouchel W. Ju W-H. Karr A. Theus M. Vardi. “Computer
Intrusion: Detecting Masquerades”. Statistical Science, 16:1–16, 2001.

85

Vita

Kyle Bailey is from Austin, Texas and graduated from the Unites States Air Force

Academy in 2011.

86

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704–0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704–0188), 1215 Jefferson Davis Highway,
Suite 1204, Arlington, VA 22202–4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection
of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD–MM–YYYY) 2. REPORT TYPE 3. DATES COVERED (From — To)

4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

16. SECURITY CLASSIFICATION OF:

a. REPORT b. ABSTRACT c. THIS PAGE

17. LIMITATION OF
ABSTRACT

18. NUMBER
OF
PAGES

19a. NAME OF RESPONSIBLE PERSON

19b. TELEPHONE NUMBER (include area code)

Standard Form 298 (Rev. 8–98)
Prescribed by ANSI Std. Z39.18

21–03–2013 Master’s Thesis Oct 2011–Mar 2013

Computer Based Behavioral Biometric Authentication
via Multi-Modal Fusion

AFOSR/LRIR 2010-097

Bailey, Kyle O., Second Lieutenant, USAF

Air Force Institute of Technology
Graduate School of Engineering and Management (AFIT/EN)
2950 Hobson Way
WPAFB, OH 45433-7765

AFIT-ENG-13-M-04

Dr. Tristan Nguyen
Air Force Office of Scientific Research
875 N. Randolph, Ste.325
Arlington Virginia, 22203

AFOSR/RTC

12. DISTRIBUTION / AVAILABILITY STATEMENT

DISTRIBUTION STATEMENT A.
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
13. SUPPLEMENTARY NOTES

This work is declared a work of the U.S. Government and is not subject to copyright protection in the United States.

14. ABSTRACT

Biometric computer authentication has an advantage over password and access card authentication in that it is based
on something you are, which is not easily copied or stolen. One way of performing biometric computer authentication
is to use behavioral tendencies associated with how a user interacts with the computer. However, behavioral biometric
authentication accuracy rates are much larger then more traditional authentication methods. This thesis presents a
behavioral biometric system that fuses user data from keyboard, mouse, and Graphical User Interface (GUI) interactions.
Combining the modalities results in a more accurate authentication decision based on a broader view of the user’s
computer activity while requiring less user interaction to train the system than previous work. Testing over 30 users,
shows that fusion techniques significantly improve behavioral biometric authentication accuracy over single modalities
on their own. Two fusion techniques are presented, feature fusion and decision level fusion. Using an ensemble based
classification method the decision level fusion technique improves the FAR by 0.86% and FRR by 2.98% over the best
individual modality.

15. SUBJECT TERMS

Biometrics, Computer Security, Insider Threat, Active Authentication

U U U UU 101

Dr. Gilbert L. Peterson (ENG)

(937) -6565 x4281 gilbert.peterson@afit.edu

whall
Typewritten Text

whall
Typewritten Text

whall
Typewritten Text

whall
Typewritten Text
255

	Abstract
	Acknowledgments
	Table of Contents
	List of Figures
	List of Tables
	List of Symbols
	List of Acronyms
	Introduction
	Physiological Biometrics
	Behavioral Biometrics
	Multi-Modal Fusion
	Thesis Structure

	Related Work
	Metrics for Biometric Authentication
	Identification and Authentication
	Static vs. Dynamic Authentication
	Keyboard Dynamics
	Mouse Dynamics
	Graphical User Interface Interaction
	Multi-Modal Biometric Techniques
	Concerns Regarding Biometric Authentication

	Experimental Design
	Data Collection Software
	Collection Environment and Task Selection
	Participant Selection
	Feature Generation
	Fusion System Design

	Results
	Feature Fusion Results
	Ensemble Based Decision Level Fusion Classification Results
	Comparison with Prior Individual Modality Results
	Demographic Effects on Results
	Alternate Data Division Results
	Summary

	Conclusions
	Final Thoughts
	Future Work

	Appendix A: List of Windows 7 Window Class Names
	Appendix B: List of Windows 7 Processes
	Appendix C: Tasks Given to Testing Participants
	Appendix D: Demographic Survey Given to All Participants
	Appendix E: Demographic Information for All Participants
	Appendix F: Multi-class Classification Timing Information Using the Fusion Dataset
	Appendix G: Institutional Review Board Approval
	Bibliography
	Vita

